The Impact of Computational Methods on Transition Metal-containing Species (open access)

The Impact of Computational Methods on Transition Metal-containing Species

Quantum chemistry methodologies can be used to address a wide variety of chemical problems. Key to the success of quantum chemistry methodologies, however, is the selection of suitable methodologies for specific problems of interest, which often requires significant assessment. To gauge a number of methodologies, the utility of density functionals (BLYP, B97D, TPSS, M06L, PBE0, B3LYP, M06, and TPSSh) in predicting reaction energetics was examined for model studies of C-O bond activation of methoxyethane and methanol. These species provide excellent representative examples of lignin degradation via C-O bond cleavage. PBE0, which performed better than other considered DFT functionals, was used to investigate late 3d (Fe, Co, and Ni), 4d (Ru, Rh, and Pd), and 5d (Re, Os, and Ir) transition metal atom mediated Cβ -O bond activation of the β–O–4 linkage of lignin. Additionally, the impact of the choice of DFT functionals, basis sets, implicit solvation models, and layered quantum chemical methods (i.e., ONIOM, Our Own N-layered Integrated molecular Orbital and molecular Mechanics) was investigated for the prediction of pKa for a set of Ni-group metal hydrides (M = Ni, Pd, and Pt) in acetonitrile. These investigations have provided insight about the utility of a number of theoretical methods in …
Date: December 2015
Creator: Wang, Jiaqi
System: The UNT Digital Library
Systematic Approaches to Predictive Computational Chemistry using the Correlation Consistent Basis Sets (open access)

Systematic Approaches to Predictive Computational Chemistry using the Correlation Consistent Basis Sets

The development of the correlation consistent basis sets, cc-pVnZ (where n = D, T, Q, etc.) have allowed for the systematic elucidation of the intrinsic accuracy of ab initio quantum chemical methods. In density functional theory (DFT), where the cc-pVnZ basis sets are not necessarily optimal in their current form, the elucidation of the intrinsic accuracy of DFT methods cannot always be accomplished. This dissertation outlines investigations into the basis set requirements for DFT and how the intrinsic accuracy of DFT methods may be determined with a prescription involving recontraction of the cc-pVnZ basis sets for specific density functionals. Next, the development and benchmarks of a set of cc-pVnZ basis sets designed for the s-block atoms lithium, beryllium, sodium, and magnesium are presented. Computed atomic and molecular properties agree well with reliable experimental data, demonstrating the accuracy of these new s-block basis sets. In addition to the development of cc-pVnZ basis sets, the development of a new, efficient formulism of the correlation consistent Composite Approach (ccCA) using the resolution of the identity (RI) approximation is employed. The new formulism, denoted 'RI-ccCA,' has marked efficiency in terms of computational time and storage, compared with the ccCA formulism, without the introduction of …
Date: May 2009
Creator: Prascher, Brian P.
System: The UNT Digital Library
Kinetics of Sulfur: Experimental Study of the Reaction of Atomic Sulfur with Acetylene and Theoretical Study of the Cn + So Potential Energy Surface (open access)

Kinetics of Sulfur: Experimental Study of the Reaction of Atomic Sulfur with Acetylene and Theoretical Study of the Cn + So Potential Energy Surface

The kinetics of the reaction of atomic sulfur with acetylene (S (3P) + C2H2) were investigated experimentally via the flash photolysis resonance fluorescence method, and the theoretical potential energy surface for the reaction CN + SO was modeled via the density functional and configuration interaction computational methods. Sulfur is of interest in modern chemistry due to its relevance in combustion and atmospheric chemistry, in the Claus process, in soot and diamond-film formation and in astrochemistry. Experimental conditions ranged from 295 – 1015 K and 10 – 400 Torr of argon. Pressure-dependence was shown at all experimental temperatures. The room temperature high-pressure limit second order rate constant was (2.10 ± 0.08) × 10-13 cm3 molecule-1 s-1. The Arrhenius plot of the high-pressure limit rate constants gave an Ea of (11.34 ± 0.03) kJ mol-1 and a pre-exponential factor of (2.14 ± 0.19) × 10-11 cm3 molecule-1 s-1. S (3P) + C2H2 is likely an adduct forming reaction due to pressure-dependence (also supported by a statistical mechanics analysis) which involves intersystem crossing. The potential energy surface for CN + SO was calculated at the B3LYP/6-311G(d) level and refined at the QCISD/6-311G(d) level. The PES was compared to that of the analogous reaction …
Date: May 2013
Creator: Ayling, Sean A.
System: The UNT Digital Library
Advancements in Instrumentation for Fourier Transform Microwave Spectroscopy (open access)

Advancements in Instrumentation for Fourier Transform Microwave Spectroscopy

The efforts of my research have led to the successful construction of several instruments that have helped expand the field of microwave spectroscopy. The classic Balle-Flygare spectrometer has been modified to include two different sets of antenna to operate in the frequency ranges 6-18 GHz and 18-26 GHz, allowing it to function for a large range without having to break vacuum. This modified FTMW instrument houses two low noise amplifiers in the vacuum chamber to allow for the LNAs to be as close to the antenna as physically possible, improving sensitivity. A new innovative Balle-Flygare type spectrometer, the efficient low frequency FTMW, was conceived and built to operate at frequencies as low as 500 MHz through the use of highly curved mirrors. This is new for FTMW techniques that normally operate at 4 GHz or higher with only a few exceptions around 2 GHz. The chirped pulse FTMW spectrometer uses horn antennas to observe spectra that span 2 GHz versus the standard 1 MHz of a cavity technique. This instrument decreases the amount of time to obtain a large spectral region of relative correct intensity molecular transitions. A Nd:YAG laser ablation apparatus was attached to the classic Balle-Flygare and chirped …
Date: August 2011
Creator: Dewberry, Christopher Thomas
System: The UNT Digital Library
Accuracy and Efficiency in Computational Chemistry: The Correlation Consistent Composite Approach (open access)

Accuracy and Efficiency in Computational Chemistry: The Correlation Consistent Composite Approach

One of the central concerns of computational chemistry is that of efficiency (i.e. the development of methodologies which will yield increased accuracy of prediction without requiring additional computational resources – RAM, disk space, computing time). Though the equations of quantum mechanics are known, the solutions to these equations often require a great deal of computing power. This dissertation primarily concerns the theme of improved computational efficiency (i.e. the achievement of greater accuracy with reduced computational cost). Improvements in the efficiency of computational chemistry are explored first in terms of the correlation consistent composite approach (ccCA). The ccCA methodology was modified and this enhanced ccCA methodology was tested against the diverse G3/05 set of 454 energetic properties. As computational efficiency improves, molecules of increasing size may be studied and this dissertation explored the issues (differential correlation and size extensivity effects) associated with obtaining chemically accurate (within 1 kcal mol-1) enthalpies of formation for hydrocarbon molecules of escalating size. Two applied projects are also described; these projects concerned the theoretical prediction of a novel rare gas compound, FKrOH, and the mechanism of human glutathione synthetase’s (hGS) negative cooperativity. The final work examined the prospect for the parameterization of the modified embedded atom …
Date: August 2011
Creator: Wilson, Brent R.
System: The UNT Digital Library
Thermochemistry Investigations Via the Correlation Consistent Composite Approach (open access)

Thermochemistry Investigations Via the Correlation Consistent Composite Approach

Since the development of the correlation consistent composite approach (ccCA) in 2006, ccCA has been shown to be applicable across the periodic table, producing, on average, energetic properties (e.g., ionization potentials, electron affinities, enthalpies of formation, bond dissociation energies) within 1 kcal/mol for main group compounds. This dissertation utilizes ccCA in the investigation of several chemical systems including nitrogen-containing compounds, sulfur-containing compounds, and carbon dioxide complexes. The prediction and calculation of energetic properties (e.g., enthalpies of formation and interaction energies) of the chemical systems investigated within this dissertation has led to suggestions of novel insensitive highly energetic nitrogen-containing compounds, defined reaction mechanisms for sulfur compounds allowing for increased accuracy compared to experimental enthalpies of formation, and a quantitative structure activity relationship for altering the affinity of CO2 with substituted amine compounds. Additionally, a study is presented on the convergence of correlation energy and optimal domain criteria for local Møller–Plesset theory (LMP2).
Date: December 2012
Creator: Jorgensen, Kameron R.
System: The UNT Digital Library
Quantum Chemistry Calculations of Energetic and Spectroscopic Properties of p- and f-Block Molecules (open access)

Quantum Chemistry Calculations of Energetic and Spectroscopic Properties of p- and f-Block Molecules

Quantum chemical methods have been used to model a variety of p- and f-block chemical species to gain insight about their energetic and spectroscopic properties. As well, the studies have provided understanding about the utility of the quantum mechanical approaches employed for the third-row and lanthanide species. The multireference ab initio correlation consistent Composite Approach (MR-ccCA) was utilized to predict dissociation energies for main group third-row molecular species, achieving energies within 1 kcal mol-1 on average from those of experiment and providing the first demonstration of the utility of MR-ccCA for third-row species. Multireference perturbation theory was utilized to calculate the electronic states and dissociation energies of NdF2+, providing a good model of the Nd-F bond in NdF3 from an electronic standpoint. In further work, the states and energies of NdF+ were determined using an equation of motion coupled cluster approach and the similarities for both NdF2+ and NdF were noted. Finally, time-dependent density functional theory and the static exchange approximation for Hartree-Fock in conjunction with a fully relativistic framework were used to calculate the L3 ionization energies and electronic excitation spectra as a means of characterizing uranyl (UO22+) and the isoelectronic compounds NUO+ and UN2.
Date: August 2016
Creator: South, Christopher James
System: The UNT Digital Library
Computational Modeling of Small Molecules (open access)

Computational Modeling of Small Molecules

Computational chemistry lies at the intersection of chemistry, physics, mathematics, and computer science, and can be used to explain the behavior of atoms and molecules, as well as to augment experiment. In this work, computational chemistry methods are used to predict structural and energetic properties of small molecules, i.e. molecules with less than 60 atoms. Different aspects of computational chemistry are examined in this work. The importance of examining the converged orbitals obtained in an electronic structure calculation is explained. The ability to more completely describe the orbital space through the extrapolation of energies obtained at increasing quality of basis set is investigated with the use of the Sapporo-nZP-2012 family of basis set. The correlation consistent Composite Approach (ccCA) is utilized to compute the enthalpies of formation of a set of molecules and the accuracy is compared with the target method, CCSD(T,FC1)/aug-cc-pCV∞Z-DK. Both methodologies are able to produce computed enthalpies of formation that are typically within 1 kcal mol-1 of reliable experiment. This demonstrates that ccCA can be used instead of much more computationally intensive methods (in terms of memory, processors, and time required for a calculation) with the expectation of similar accuracy yet at a reduced computational cost. The …
Date: December 2015
Creator: Weber, Rebecca J.
System: The UNT Digital Library
From Development of Semi-empirical Atomistic Potentials to Applications of Correlation Consistent Basis Sets (open access)

From Development of Semi-empirical Atomistic Potentials to Applications of Correlation Consistent Basis Sets

The development of the semi-empirical atomistic potential called the embedded atom method (EAM) has allowed for the efficient modeling of solid-state environments, at a lower computational cost than afforded by density functional theory (DFT). This offers the capability of EAM to model the energetics of solid-state phases of varying coordination, including defects, such as vacancies and self-interstitials. This dissertation highlights the development and application of two EAMs: a Ti potential constructed with the multi-state modified embedded atom method (MS-MEAM), and a Ni potential constructed with the fragment Hamiltonian (FH) method. Both potentials exhibit flexibility in the description of different solid-states phases and applications. This dissertation also outlines two applications of DFT. First, a study of structure and stability for solid-state forms of NixCy (in which x and y are integers) is investigated using plane-wave DFT. A ground state phase for Ni2C is elucidated and compared to known and hypothesized forms of NixCy. Also, a set of correlation consistent basis sets, previously constructed using the B3LYP and BLYP density functionals, are studied. They are compared to the well-known to the correlation consistent basis sets that were constructed with higher-level ab initio methodologies through computations of enthalpies of formation and combustion enthalpies. …
Date: May 2014
Creator: Gibson, Joshua S.
System: The UNT Digital Library
Accurate and Reliable Prediction of Energetic and Spectroscopic Properties Via Electronic Structure Methods (open access)

Accurate and Reliable Prediction of Energetic and Spectroscopic Properties Via Electronic Structure Methods

Computational chemistry has led to the greater understanding of the molecular world, from the interaction of molecules, to the composition of molecular species and materials. Of the families of computational chemistry approaches available, the main families of electronic structure methods that are capable of accurate and/or reliable predictions of energetic, structural, and spectroscopic properties are ab initio methods and density functional theory (DFT). The focus of this dissertation is to improve the accuracy of predictions and computational efficiency (with respect to memory, disk space, and computer processing time) of some computational chemistry methods, which, in turn, can extend the size of molecule that can be addressed, and, for other methods, DFT, in particular, gain greater insight into which DFT methods are more reliable than others. Much, though not all, of the focus of this dissertation is upon transition metal species – species for which much less method development has been targeted or insight about method performance has been well established. The ab initio approach that has been targeted in this work is the correlation consistent composite approach (ccCA), which has proven to be a robust, ab initio computational method for main group and first row transition metal-containing molecules yielding, on …
Date: August 2013
Creator: Laury, Marie L.
System: The UNT Digital Library
Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds. (open access)

Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds.

A series of computational studies were carried out on Group 14 (C, Si and Ge) elements in organometallic and biological compounds. Theoretical studies on classical and H-bridged A3H3+ (A=C, Si and Ge) as p ligands with different organometallic fragments at B3LYP and B3P86 level reveal a reverse charge transfer from ligand to metal in Si and Ge complexes whereas in C complexes there is a small charge transfer from metal to ligand. The H-bridged complexes are more stable than the complexes based on Si3H3+ and Ge3H3+ ligands with terminal hydrogens. The stability of the bridged systems increases from Si to Ge. Corrective scale factors for computed harmonic CºO vibrational frequencies for 31 organometallic complexes have been determined at the HF and B3LYP levels. The scaled B3LYP frequencies exhibit a greater reliability than do HF frequencies. Experimental data have shown that Si/Ge-substituted decapeptides are advantageous over their C analog in vitro and in vivo studies in modern hormone therapy. A computational investigation was carried out on the synthesized decapeptides focusing on position 5 containing Si and Ge. The results have shown that there are some differences in C, Si and Ge-containing analogs. However, further investigations are needed to elucidate the observed …
Date: May 2007
Creator: Yu, Liwen
System: The UNT Digital Library
The One Electron Basis Set: Challenges in Wavefunction and Electron Density Calculations (open access)

The One Electron Basis Set: Challenges in Wavefunction and Electron Density Calculations

In the exploration of chemical systems through quantum mechanics, accurate treatment of the electron wavefunction, and the related electron density, is fundamental to extracting information concerning properties of a system. This work examines challenges in achieving accurate chemical information through manipulation of the one-electron basis set.
Date: May 2016
Creator: Mahler, Andrew
System: The UNT Digital Library
The evaluation, development, and application of the correlation consistent basis sets. (open access)

The evaluation, development, and application of the correlation consistent basis sets.

Employing correlation consistent basis sets coupled with electronic structure methods has enabled accurate predictions of chemical properties for second- and third-row main group and transition metal molecular species. For third-row (Ga-Kr) molecules, the performance of the correlation consistent basis sets (cc-pVnZ, n=D, T, Q, 5) for computing energetic (e.g., atomization energies, ionization energies, electron and proton affinities) and structural properties using the ab initio coupled cluster method including single, double, and quasiperturbative triple excitations [CCSD(T)] and the B3LYP density functional method was examined. The impact of relativistic corrections on these molecular properties was determined utilizing the Douglas-Kroll (cc-pVnZ-DK) and pseudopotential (cc-pVnZ-PP) forms of the correlation consistent basis sets. This work was extended to the characterization of molecular properties of novel chemically bonded krypton species, including HKrCl, FKrCF3, FKrSiF3, FKrGeF3, FKrCCF, and FKrCCKrF, and provided the first evidence of krypton bonding to germanium and the first di-krypton system. For second-row (Al-Ar) species, the construction of the core-valence correlation consistent basis sets, cc-pCVnZ was reexamined, and a revised series, cc-pCV(n+d)Z, was developed as a complement to the augmented tight-d valence series, cc-pV(n+d)Z. Benchmark calculations were performed to show the utility of these new sets for second-row species. Finally, the correlation consistent basis …
Date: December 2006
Creator: Yockel, Scott
System: The UNT Digital Library
Transition Metal Mediated C-o Bond Cleavage: From Co2 Activation to Lignin Degradation (open access)

Transition Metal Mediated C-o Bond Cleavage: From Co2 Activation to Lignin Degradation

CO2 activation and conversion mediated by transition metal (TM) catalysts were investigated. Homogeneous catalysis of the reverse water gas shift reaction CO2+H2→H2O+CO was studied as a means to reduce CO2. β-diketiminato metal models L'MI ( L' =C3N2H5-; M = first-row TMs) were considered as potential catalysts. The thermodynamics of prototypical reaction pathways were simulated using B3LYP/aug-cc-pVTZ. Results show that middle series metal complexes result in more thermodynamically favorable properties; therefore, more detailed thermodynamic and kinetic studies were carried out for Mn, Fe, and Co complexes. On the other hand, heterogeneous catalysis of the reduction of CO2 to CO was carried out on Fe, Co, Ni, and Cu surfaces, using the PBE functional. Reaction barriers were calculated using the climbing image nudged elastic band method. Late 3d and 4d transition metal ion (Fe, Co, Ni, Cu, Ru, Rh, Pd, and Ag) mediated activation of dimethyl ether was studied to investigate the intrinsic catalytic properties of metals for C-O bond cleavage. A set of density functional theory (DFT) methods (BLYP, B3LYP, M06, M06-L, B97-1, B97-D, TPSS, and PBE) with aug-cc-pVTZ basis sets was calibrated with CCSD(T)/CBS calculations on reaction energies and barriers.
Date: August 2013
Creator: Liu, Cong
System: The UNT Digital Library
Ab Initio and Density Functional Investigation of the Conformer Manifold of Melatonin and a Proposal for a Simple Dft-based Diagnostic for Nondynamical Correlation (open access)

Ab Initio and Density Functional Investigation of the Conformer Manifold of Melatonin and a Proposal for a Simple Dft-based Diagnostic for Nondynamical Correlation

In this work we address two problems in computational chemistry relevant to biomolecular modeling. In the first project, we consider the conformer space of melatonin as a a representative example of “real-life” flexible biomolecules. Geometries for all 52 unique conformers are optimized using spin-component scaled MP2, and then relative energies are obtained at the CCSD (T) level near the complete basis set limit. These are then used to validate a variety of DFT methods with and without empirical dispersion corrections, as well as some lower-level ab initio methods. Basis set convergence is found to be relatively slow due to internal C-H…O and C-H…N contacts. Absent dispersion corrections, many DFT functionals will transpose the two lowest conformers. Dispersion corrections resolve the problem for most functionals. Double hybrids yield particularly good performance, as does MP2.5. In the second project, we propose a simple DFT-based diagnostic for nondynamical correlation effects. Aλ= (1-TAE [ΧλC]/TAE[XC])/λ where TAE is the total atomization energy, XC the “pure” DFT exchange-correlation functional, and ΧλC the corresponding hybrid with 100λ% HF-type exchange. The diagnostic is a good predictor for sensitivity of energetics to the level of theory, unlike most of the wavefunction-based diagnostics. For GGA functionals, Aλ values approaching unity …
Date: August 2013
Creator: Fogueri, Uma
System: The UNT Digital Library
The Multi-reference Correlation Consistent Composite Approach: A New Vista In Quantitative Prediction Of Thermochemical And Spectroscopic Properties (open access)

The Multi-reference Correlation Consistent Composite Approach: A New Vista In Quantitative Prediction Of Thermochemical And Spectroscopic Properties

The multi-reference correlation consistent composite approach (MR-ccCA) was designed to reproduce the accuracy of more computationally intensive ab initio quantum mechanical methods like MR-ACPF-DK/aug-cc-pCV?Z-DK, albeit at a significantly reduced cost. In this dissertation, the development and applications of the MR-ccCA method and a variant of its single reference equivalent (the relativistic pseudopotential ccCA method) are reported. MR-ccCA is shown to predict the energetic properties of reactive intermediates, excited states species and transition states to within chemical accuracy (i.e. ±1.0 kcal mol 1) of reliable experimental values. The accuracy and versatility of MR-ccCA are also demonstrated in the prediction of the thermochemical and spectroscopic properties (such as atomization energies, enthalpies of formation and adiabatic transition energies of spin-forbidden excited states) of a series of silicon-containing compounds. The thermodynamic and kinetic feasibilities of the oxidative addition of an archetypal arylglycerol ?-aryl ether (?-O-4 linkage) substructure of lignin to Ni, Cu, Pd and Pt transition metal atoms using the efficient relativistic pseudopotential correlation consistent composite approach within an ONIOM framework (rp-ccCA-ONIOM), a multi-level multi-layer QM/QM method formulated to enhance the quantitative predictions of the chemical properties of heavy element-containing systems larger than hitherto attainable, are also reported.
Date: December 2011
Creator: Oyedepo, Gbenga A.
System: The UNT Digital Library
Accurate Energetics Across the Periodic Table Via Quantum Chemistry (open access)

Accurate Energetics Across the Periodic Table Via Quantum Chemistry

Greater understanding and accurate predictions of structural, thermochemical, and spectroscopic properties of chemical compounds is critical for the advancements of not only basic science, but also in applications needed for the growth and health of the U.S. economy. This dissertation includes new ab initio composite approaches to predict accurate energetics of lanthanide-containing compounds including relativistic effects, and optimization of parameters for semi-empirical methods for transition metals. Studies of properties and energetics of chemical compounds through various computational methods are also the focus of this research, including the C-O bond cleavage of dimethyl ether by transition metal ions, the study of thermochemical and structural properties of small silicon containing compounds with the Multi-Reference correlation consistent Composite Approach, the development of a composite method for heavy element systems, spectroscopic of compounds containing noble gases and metals (ArxZn and ArxAg+ where x = 1, 2), and the effects due to Basis Set Superposition Error (BSSE) on these van der Waals complexes.
Date: December 2015
Creator: Peterson, Charles Campbell
System: The UNT Digital Library