29 Matching Results

Results open in a new window/tab. Unexpected Results? Search the Catalog Instead.

International perspectives on coal preparation (open access)

International perspectives on coal preparation

The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.
Date: December 31, 1997
Creator: unknown
Object Type: Article
System: The UNT Digital Library
Bench-Scale Testing of the Micronized Magnetite Process (open access)

Bench-Scale Testing of the Micronized Magnetite Process

A recent emphasis of the Department of Energy's (DOE's), Coal Preparation Program has been the development of high-efficiency technologies that offer near-term, low-cost improvements in the ability of coal preparation plants to address problems associated with coal fines. In 1992, three cost-shared contracts were awarded to industry, under the first High-Efficiency Preparation (HEP I) solicitation. All three projects involved bench-scale testing of various emerging technologies, at the Federal Energy Technology Center*s (FETC*s), Process Research Facility (PRF). The first HEP I project, completed in mid-1993, was conducted by Process Technology, Inc., with the objective of developing a computerized, on-line system for monitoring and controlling the operation of a column flotation circuit. The second HEP I project, completed in mid-1994, was conducted by a team led by Virginia Polytechnic Institute to test the Mozely Multi-Gravity Separator in combination with the Microcel Flotation Column, for improved removal of mineral matter and pyritic sulfur from fine coal. The last HEP I project, of which the findings are contained in this report, was conducted by Custom Coals Corporation to evaluate and advance a micronized-magnetite-based, fine-coal cycloning technology. The micronized-magnetite coal cleaning technology, also know as the Micro-Mag process, is based on widely used conventional dense-medium …
Date: November 1, 1997
Creator: Torak, Edward R. & Suardini, Peter J.
Object Type: Report
System: The UNT Digital Library
Long-term surveillance plan for the Maybell, Colorado Disposal Site (open access)

Long-term surveillance plan for the Maybell, Colorado Disposal Site

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document …
Date: December 1, 1997
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Long-term surveillance plan for the Maybell, Colorado Disposal Site (open access)

Long-term surveillance plan for the Maybell, Colorado Disposal Site

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document …
Date: September 1, 1997
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Authorized limits for Fernald copper ingots (open access)

Authorized limits for Fernald copper ingots

This development document contains data and analysis to support the approval of authorized limits for the unrestricted release of 59 t of copper ingots containing residual radioactive material from the U.S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP). The analysis presented in this document comply with the requirements of DOE Order 5400.5, {open_quotes}Radiation Protection of the Public and the Environment,{close_quotes} as well as the requirements of the proposed promulgation of this order as 10 CFR Part 834. The document was developed following the step-by-step process described in the Draft Handbook for Controlling Release for Reuse or Recycle Property Containing Residual Radioactive Material.
Date: September 1, 1997
Creator: Frink, N.; Kamboj, S.; Hensley, J. & Chen, S. Y.
Object Type: Report
System: The UNT Digital Library
Extraction Chromatography: Progress and Opportunities (open access)

Extraction Chromatography: Progress and Opportunities

Extraction chromatography provides a simple and effective method for the analytical and preparative-scale separation of a variety of metal ions. Recent advances in extractant design, particularly the development of extractants capable of metal ion recognition or of strong complex formation in highly acidic media, have significantly improved the utility of the technique. Advances in support design, most notably the introduction of functionalized supports to enhance metal ion retention, promise to yield further improvements. Column instability remains a significant obstacle, however, to the process-scale application of extraction chromatography. 79 refs.
Date: October 1, 1997
Creator: Dietz, M. L.; Horwitz, E. P. & Bond, A. H.
Object Type: Article
System: The UNT Digital Library
Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado (open access)

Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE has implemented to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell …
Date: March 1, 1997
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications (open access)

Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications

The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel� column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and
Date: September 26, 1997
Creator: Smit, Frank J.; Schields, Gene L.; Jha, Mehesh C. & Moro, Nick
Object Type: Report
System: The UNT Digital Library
Knolls Atomic Power Laboratory annual environmental monitoring report, calendar year 1997 (open access)

Knolls Atomic Power Laboratory annual environmental monitoring report, calendar year 1997

The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations.
Date: December 31, 1997
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado (open access)

Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Burro Canyon disposal cell performs as designed and is cared for in a manner that protects the public health and safety and the environment. The program is based on site inspections to identify threats to disposal cell integrity. Before each disposal cell is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.
Date: August 1, 1997
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado (open access)

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney Disposal Site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.
Date: July 1, 1997
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Engineering development of advanced physical fine coal cleaning for premium fuel applications (open access)

Engineering development of advanced physical fine coal cleaning for premium fuel applications

The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.
Date: April 25, 1997
Creator: Smit, F. J.; Jha, M. C.; Phillips, D. I. & Yoon, R. H.
Object Type: Report
System: The UNT Digital Library
Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado (open access)

Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado

This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.
Date: August 1, 1997
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado (open access)

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term …
Date: April 1, 1997
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Introduction to naturally occurring radioactive material (open access)

Introduction to naturally occurring radioactive material

Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute …
Date: August 1, 1997
Creator: Egidi, P.
Object Type: Article
System: The UNT Digital Library
Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill (open access)

Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff`s review of Atlas Corporation`s proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs.
Date: March 1, 1997
Creator: unknown
Object Type: Report
System: The UNT Digital Library
De Leon's Monitor (De Leon, Tex.), Vol. 2, No. 44, Ed. 1 Thursday, May 1, 1997 (open access)

De Leon's Monitor (De Leon, Tex.), Vol. 2, No. 44, Ed. 1 Thursday, May 1, 1997

Weekly newspaper from De Leon, Texas that includes local, state, and national news along with advertising.
Date: May 1, 1997
Creator: Chupp, Charles
Object Type: Newspaper
System: The Portal to Texas History
Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics (open access)

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.
Date: December 1, 1997
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Long-term surveillance plan for the Estes Gulch disposal site near Rifle, Colorado (open access)

Long-term surveillance plan for the Estes Gulch disposal site near Rifle, Colorado

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site near Rifle, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Estes Gulch disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.
Date: July 1, 1997
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Crystallization of sodium nitrate from radioactive waste (open access)

Crystallization of sodium nitrate from radioactive waste

From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs.
Date: July 1, 1997
Creator: Krapukhin, V.B. & Krasavina, E.P. Pikaev, A.K.
Object Type: Report
System: The UNT Digital Library
Appalachian Clean Coal Technology Consortium. Final report, October 10, 1994--March 31, 1997 (open access)

Appalachian Clean Coal Technology Consortium. Final report, October 10, 1994--March 31, 1997

The Appalachian Clean Coal Technology Consortium is a group comprised of representatives from the Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky Center for Applied Energy Research, that was formed to pursue research in areas related to the treatment and processing of fine coal. Each member performed research in their respective areas of expertise and the report contained herein encompasses the results that were obtained for the three major tasks that the Consortium undertook from October, 1994 through March, 1997. In the first task, conducted by Virginia Polytechnic Institute, novel methods (both mechanical and chemical) for dewatering fine coal were examined. In the second task, the Center for Applied Energy Research examined novel approaches for destabilization of [highly stable] flotation froths. And in the third task, West Virginia University developed physical and mathematical models for fine coal spirals. The Final Report is written in three distinctive chapters, each reflecting the individual member`s task report. Recommendations for further research in those areas investigated, as well as new lines of pursuit, are suggested.
Date: December 31, 1997
Creator: Yoon, R. H.; Parekh, B. K. & Meloy, T.
Object Type: Report
System: The UNT Digital Library
COMBUSTION CHARACTERIZATION OF COAL-WATER SLURRY FUEL PREPARED FROM PLANT COAL AND RECOVERED COAL FINES (open access)

COMBUSTION CHARACTERIZATION OF COAL-WATER SLURRY FUEL PREPARED FROM PLANT COAL AND RECOVERED COAL FINES

In the process of coal cleaning operations, a significant amount of coal is washed away as waste into the ponds. Clearly, such a large quantity of dumped coal fines has a detrimental effect on the environment. This investigation presents in innovative approach to recover and utilize waste coal fines from the preparation plant effluent streams and tailing ponds. Due to the large moisture content of the recovered coal fines, this study is focused on the utilization of coal fines in the coal-water slurry fuel (CWSF). The CWSF consists of 53.3% weight solids with a viscosity of less than 500 centipoise and 80-90% of solids passing 200 mesh. The 53.3% weight solids constitute a blend of 15% effluent recovered coal fines and 85% clean coal. It is the authors premise that a blend of plant coal and recovered waste coal fines can be used to produce a coal-water slurry fuel with the desired combustion characteristics required by the industry. In order to evaluate these characteristics the coal-water slurry fuel is fired in a test furnace at three firing rates (834,330 Btu/hr, 669,488 Btu/hr and 508,215 Btu/hr) with three different burner settings for each firing rate. Combustion tests were conducted to determine …
Date: July 1, 1997
Creator: Masudi, Houshang
Object Type: Report
System: The UNT Digital Library
The Baytown Sun (Baytown, Tex.), Vol. 75, No. 113, Ed. 1 Thursday, March 13, 1997 (open access)

The Baytown Sun (Baytown, Tex.), Vol. 75, No. 113, Ed. 1 Thursday, March 13, 1997

Daily newspaper from Baytown, Texas that includes local, state, and national news along with advertising.
Date: March 13, 1997
Creator: Dobbs, Gary
Object Type: Newspaper
System: The Portal to Texas History
Confirmatory radiological survey of the Grand Junction Projects Office Remedial Action Project exterior portions, 1989-1995 (open access)

Confirmatory radiological survey of the Grand Junction Projects Office Remedial Action Project exterior portions, 1989-1995

The purpose of this independent assessment was to provide the U.S. Department of Energy (DOE) with an independent verification (IV) that the soil at the Grand Junction Projects Office (GJPO) complies with applicable DOE guidelines. Oak Ridge National Laboratory/ Environmental Technology Section (ORNL/ETS) which is also located at the GJPO, was assigned by DOE as the Independent Verification Contractor (IVC). The assessment included reviews of the decontamination and decommissioning plan, annual environmental monitoring reports, data in the pre- and post-remedial action reports, reassessment reports and IV surveys. Procedures and field methods used during the remediation were reviewed, commented on, and amended as needed. The IV surveys included beta-gamma and gamma radiation scans, soil sampling and analyses. Based on the data presented in the post-remedial action report and the results of the IV surveys, the remediation of the outdoor portions of the GJPO has achieved the objectives. Residual deposits of uranium contamination may exist under asphalt because the original characterization was not designed to identify uranium and subsequent investigations were limited. The IVC recommends that this be addressed with the additional remediation. The IVC is working with the remedial action contractor (RAC) to assure that final documentation WM be sufficient for …
Date: April 1, 1997
Creator: Forbes, G. H. & Egidi, P. V.
Object Type: Report
System: The UNT Digital Library