Degree Discipline

Degree Level

Infrared-Microwave Double Resonance Probing of the Population-Depopulation of Rotational States in the NO₂ and the SO₂ Molecules (open access)

Infrared-Microwave Double Resonance Probing of the Population-Depopulation of Rotational States in the NO₂ and the SO₂ Molecules

A 10.6 ym C02 laser operating a power range S P 200 watts was used to pump some select vibrational transitions in the NO2 molecule while monitoring the rotational transitions (91/9—'100/10), (232f 22 ~~"*242,23> ' (402,38 "393,37) in the (0, 0, 0) vibrational level and the (8q,8—*"^1,7) rotational transition in the (0, 1, 0) vibrational level. These rotational transitions were monitored by microwave probing to determine how the population of states in the rotational manifolds were being altered by the laser. Coincidences between some components of the V3-V2 band of N02 and the C02 infrared laser lines in the 10 um region appeared to be responsible for the strong interaction between the continuous laser beams and the molecular states.
Date: December 1982
Creator: Khoobehi, Bahram
System: The UNT Digital Library
Theoretical and Experimental Linewidth Parameters in the Rotational Spectrum of Nitrogen Dioxide (open access)

Theoretical and Experimental Linewidth Parameters in the Rotational Spectrum of Nitrogen Dioxide

Contributions to the second order collision efficiency function S ⁽²⁾ (b), used in semiclassical perturbation approaches to pressure broadening of microwave and infrared spectra, due to several leading terms, dipole and quadrupole components, in the expansion of the intermolecular interaction energy are derived by method of irreducible spherical tensor operators for molecules of arbitrary symmetry. Results are given explicitly in terms of dipole and quadrupole line strengths. General expressions for dipole moment line strength in the asymmetric rotor basis as well as quadrupole moment line strength for the special case of molecules with two independent quadrupole moment components are derived. Computer programs for calculating linewidth parameters in the rotational spectrum of ¹⁴NO₂ based on Anderson and Murphy and Boggs theories are presented.
Date: December 1982
Creator: Moazzen-Ahmadi, Mohamad Nasser
System: The UNT Digital Library
M-Shell X-Ray Production of Gold, Lead, Bismuth, Uranium for Incident Hydrogen, Helium and Fluorine Ions (open access)

M-Shell X-Ray Production of Gold, Lead, Bismuth, Uranium for Incident Hydrogen, Helium and Fluorine Ions

Incident ¹H⁺ and ⁴He⁺ ions at 0.3-2.6 MeV and ¹⁹F^q⁺ ions at 25, 27 and 35 MeV were used to study the M-shell x-ray production cross sections of Au, Pb, Bi and U. For the incident fluorine ions, projectile charge state dependence of the cross sections were extracted from measurements made with varying target thicknesses ( ~1 to ~300 μg/cm²). The efficiency of the Si(Li) detector was determined by measuring the K-shell x-ray production of various low Z elements and comparing these values to the prediction of the CPSS theory. The experimental results are compared to the prediction of first Born approximation for direct ionization to the continuum and to the OBK of Nikolaev for the electron capture to the K-, L-, M-...shells of the incident ion. Comparison is also made with the ECPSSR theory that accounts for the energy loss, Coulomb deflection, and relativistic effects in the perturbed stationary state theory.
Date: December 1982
Creator: Mehta, Rahul
System: The UNT Digital Library