Understanding and Reasoning with Negation

In this dissertation, I start with an analysis of negation in eleven benchmark corpora covering six Natural Language Understanding (NLU) tasks. With a thorough investigation, I first show that (a) these benchmarks contain fewer negations compared to general-purpose English and (b) the few negations they contain are often unimportant. Further, my empirical studies demonstrate that state-of-the-art transformers trained using these corpora obtain substantially worse results with the instances that contain negation, especially if the negations are important. Second, I investigate whether translating negation is also an issue for modern machine translation (MT) systems. My studies find that indeed the presence of negation can significantly impact translation quality, in some cases resulting in reductions of over 60%. In light of these findings, I investigate strategies to better understand the semantics of negation. I start with identifying the focus of negation. I develop a neural model that takes into account the scope of negation, context from neighboring sentences, or both. My best proposed system obtains an accuracy improvement of 7.4% over prior work. Further, I analyze the main error categories of the systems through a detailed error analysis. Next, I explore more practical ways to understand the semantics of negation. I consider …
Date: December 2022
Creator: Hossain, Md Mosharaf
System: The UNT Digital Library

Extracting Dimensions of Interpersonal Interactions and Relationships

People interact with each other through natural language to express feelings, thoughts, intentions, instructions etc. These interactions as a result form relationships. Besides names of relationships like siblings, spouse, friends etc., a number of dimensions (e.g. cooperative vs. competitive, temporary vs. enduring, equal vs. hierarchical etc.) can also be used to capture the underlying properties of interpersonal interactions and relationships. More fine-grained descriptors (e.g. angry, rude, nice, supportive etc.) can also be used to indicate the reasons or social-acts behind the dimension cooperative vs. competitive. The way people interact with others may also tell us about their personal traits, which in turn may be indicative of their probable success in their future. The works presented in the dissertation involve creating corpora with fine-grained descriptors of interactions and relationships. We also described experiments and their results that indicated that the processes of identifying the dimensions can be automated.
Date: August 2020
Creator: Rashid, Farzana
System: The UNT Digital Library
Extracting Possessions and Their Attributes (open access)

Extracting Possessions and Their Attributes

Possession is an asymmetric semantic relation between two entities, where one entity (the possessee) belongs to the other entity (the possessor). Automatically extracting possessions are useful in identifying skills, recommender systems and in natural language understanding. Possessions can be found in different communication modalities including text, images, videos, and audios. In this dissertation, I elaborate on the techniques I used to extract possessions. I begin with extracting possessions at the sentence level including the type and temporal anchors. Then, I extract the duration of possession and co-possessions (if multiple possessors possess the same entity). Next, I extract possessions from an entire Wikipedia article capturing the change of possessors over time. I extract possessions from social media including both text and images. Finally, I also present dense annotations generating possession timelines. I present separate datasets, detailed corpus analysis, and machine learning models for each task described above.
Date: May 2020
Creator: Chinnappa, Dhivya Infant
System: The UNT Digital Library

Online Testing of Context-Aware Android Applications

This dissertation presents novel approaches to test context aware applications that suffer from a cost prohibitive number of context and GUI events and event combinations. The contributions of this work to test context aware applications under test include: (1) a real-world context events dataset from 82 Android users over a 30-day period, (2) applications of Markov models, Closed Sequential Pattern Mining (CloSPAN), Deep Neural Networks- Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU), and Conditional Random Fields (CRF) applied to predict context patterns, (3) data driven test case generation techniques that insert events at the beginning of each test case in a round-robin manner, iterate through multiple context events at the beginning of each test case in a round-robin manner, and interleave real-world context event sequences and GUI events, and (4) systematically interleaving context with a combinatorial-based approach. The results of our empirical studies indicate (1) CRF outperforms other models thereby predicting context events with F1 score of about 60% for our dataset, (2) the ISFreqOne that iterates over context events at the beginning of each test case in a round-robin manner as well as interleaves real-world context event sequences and GUI events at an interval one achieves …
Date: December 2021
Creator: Piparia, Shraddha
System: The UNT Digital Library
Paradigm Shift from Vague Legal Contracts to Blockchain-Based Smart Contracts (open access)

Paradigm Shift from Vague Legal Contracts to Blockchain-Based Smart Contracts

In this dissertation, we address the problem of vagueness in traditional legal contracts by presenting novel methodologies that aid in the paradigm shift from traditional legal contracts to smart contracts. We discuss key enabling technologies that assist in converting the traditional natural language legal contract, which is full of vague words, phrases, and sentences to the blockchain-based precise smart contract, including metrics evaluation during our conversion experiment. To address the challenge of this contract-transformation process, we propose four novel proof-of-concept approaches that take vagueness and different possible interpretations into significant consideration, where we experiment with popular vendors' existing vague legal contracts. We show through experiments that our proposed methodologies are able to study the degree of vagueness in every interpretation and demonstrate which vendor's translated-smart contract can be more accurate, optimized, and have a lesser degree of vagueness. We also incorporated the method of fuzzy logic inside the blockchain-based smart contract, to successfully model the semantics of linguistic expressions. Our experiments and results show that the smart contract with the higher degrees of truth can be very complex technically but more accurate at the same time. By using fuzzy logic inside a smart contract, it becomes easier to solve the …
Date: July 2023
Creator: Upadhyay, Kritagya Raj
System: The UNT Digital Library
An Artificial Intelligence-Driven Model-Based Analysis of System Requirements for Exposing Off-Nominal Behaviors (open access)

An Artificial Intelligence-Driven Model-Based Analysis of System Requirements for Exposing Off-Nominal Behaviors

With the advent of autonomous systems and deep learning systems, safety pertaining to these systems has become a major concern. The existing failure analysis techniques are not enough to thoroughly analyze the safety in these systems. Moreover, because these systems are created to operate in various conditions, they are susceptible to unknown safety issues. Hence, we need mechanisms which can take into account the complexity of operational design domains, identify safety issues other than failures, and expose unknown safety issues. Moreover, existing safety analysis approaches require a lot of effort and time for analysis and do not consider machine learning (ML) safety. To address these limitations, in this dissertation, we discuss an artificial-intelligence driven model-based methodology that aids in identifying unknown safety issues and analyzing ML safety. Our methodology consists of 4 major tasks: 1) automated model generation, 2) automated analysis of component state transition model specification, 3) undesired states analysis, and 4) causal factor analysis. In our methodology we identify unknown safety issues by finding undesired combinations of components' states and environmental entities' states as well as causes resulting in these undesired combinations. In our methodology, we refer to the behaviors that occur because of undesired combinations as off-nominal …
Date: May 2021
Creator: Madala, Kaushik
System: The UNT Digital Library