Degree Level

Impact of Anti-S2 Peptides on a Variety of Muscle Myosin S2 Isoforms and Hypertrophic Cardiomyopathy Mutants Revealed by Fluorescence Resonance Energy Transfer and Gravitational Force Spectroscopy

Myosin subfragment-2 (S2) is an intrinsically unstable coiled coil. This dissertation tests if the mechanical stability of myosin S2 would influence the availability of myosin S1 heads to actin thin filaments. The elevated instability in myosin S2 coiled coil could be one of the causes for hypercontractility in Familial Hypertrophic Cardiomyopathy (FHC). As hypothesized FHC mutations, namely E924K and E930del, in myosin S2 displayed an unstable myosin S2 coiled coil compared to wild type as measured by Fluorescence Resonant Energy Transfer (FRET) and gravitational force spectroscopy (GFS). To remedy this, anti-S2 peptides; the stabilizer and the destabilizer peptides by namesake were designed in our lab to increase and decrease the stability of myosin S2 coiled coil to influence the actomyosin interaction. Firstly, the effectiveness of anti-S2 peptides were tested on muscle myosin S2 peptides across MYH11 (smooth), MYH7 (cardiac), and MYH2 (skeletal) with GFS and FRET. The results demonstrated that the mechanical stability was increased by the stabilizer and decreased by the destabilizer across the cardiac and skeletal myosin S2 isoform but not for the smooth muscle isoform. The destabilizer peptide had dissociation binding constants of 9.97 × 10-1 μM to MYH7 isoform, 1.00 μM to MYH2 isoform, and no …
Date: August 2020
Creator: Aboonasrshiraz, Negar
System: The UNT Digital Library