Preventing Thermal Degradation of Pvc Insulation by Mixtures of Cross-Linking Agents and Antioxidants (open access)

Preventing Thermal Degradation of Pvc Insulation by Mixtures of Cross-Linking Agents and Antioxidants

Poly(vinyl chloride)(PVC) wire and cable insulation has poor thermal stability, causing the plasticizer to separate from the PVC chain and produce an oily residue, lowering the tensile elongation at break and thus increasing brittleness. We have added 4 wt.% of three different types of cross-linking agents and antioxidants, as well as mixtures of both, to improve the thermal stability of the plasticizer and tensile properties of PVC after thermal exposure. We performed tensile tests, tribological tests, profilometry, scanning electron microscopy(SEM) and water absorption determination before and after thermal exposure at 136 ℃ for 1 week. After adding the agents, elongation at break increased by 10 to 20 % while the wear rate and water absorption were lower than for the control sample. Less voids are seen in the SEM images after adding these two kinds of agents. The thermal resistance of the PVC cable insulation is best enhanced by combinations of cross-linking agents and antioxidants.
Date: May 2018
Creator: Kim, Taehwan
System: The UNT Digital Library
Maleic anhydride grafted polypropylene coatings on steel: Adhesion and wear. (open access)

Maleic anhydride grafted polypropylene coatings on steel: Adhesion and wear.

Polymeric coatings are being used in a growing number of applications, contributing to protection against weather conditions and localized corrosion, reducing the friction and erosion wear on the substrate. In this study, various polypropylene (PP) coatings were applied onto steel substrates by compression molding. Chemical modification of PP has been performed to increase its adhesion to metallic surfaces by grafting of maleic anhydride (MAH) onto PP in the presence of dicumyl peroxide (DCP). Influence of different concentrations of MAH and DCP on the properties of resulting materials have been examined. The coated steel samples are characterized by scanning electron microscopy (SEM), shear adhesion testing, FTIR and tribometry. The coatings with 3 wt. % MAH have shown the maximum adhesion strength due to maximum amount of grafting. The wear rates increased with increasing the amount of MAH due to simultaneous increase in un-reacted MAH.
Date: May 2010
Creator: Mahendrakar, Sridhar
System: The UNT Digital Library