Multiple Dimensions of Fish Functional Traits, Trait Relationships, and Associations with Community Structure and Dynamics

Trait-based approaches are useful in ecological research because of their potential ability to predict species responses from patterns present in the community and to infer mechanisms driving community assembly. Current approaches for fishes are lacking traits across all five fundamental niche dimensions (i.e. habitat, life history, trophic, metabolic and defense). This study quantified a broad range of fish functional traits across all five niche dimensions (commonly used traits and novel traits), quantified intra- and interspecific variation for each trait, tested for relationships among traits within and among niche dimensions, tested for phylogenetic conservatism of traits and assessed trait-environment relationships for a subset of these traits under two different contexts. Approximately one third of the quantified traits exhibited greater intraspecific variation than interspecific variation and were not included in subsequent analyses. There were similarities between phylogeny and trait dendrograms for all traits, and habitat, metabolic and defense traits. The traits identified in chapter 2 were able to explain species responses during different flow periods in two intermittent streams as well as species-specific differences in host microbiome at the onset of drought in one intermittent stream. The novel traits identified in chapter 2 did contribute to our understanding of the community assembly …
Date: December 2021
Creator: Harried, Brittany Lee
System: The UNT Digital Library
Flow-Recruitment Relationships of Smallmouth Buffalo (Ictiobus bubalus) in Three Texas River Basins (open access)

Flow-Recruitment Relationships of Smallmouth Buffalo (Ictiobus bubalus) in Three Texas River Basins

This project focused on the relationship between instream flows and smallmouth buffalo (Ictiobus bubalus) recruitment in the Gulf Coastal Plain of Texas. The flow regime is the dominant factor in lotic systems and, consequently, the relationship between instream flows, including impacts to natural flow regimes, and life-history is a subject of growing interest. Smallmouth buffalo is a good model to investigate the relationship between river flows and variable interannual recruitment success of periodic life-history strategist fish species. Smallmouth buffalo were collected from the Brazos, Colorado, and Guadalupe Rivers of Texas, U.S.A., and otoliths were extracted from individuals in the field and sectioned and photographed in the lab. Photographs of sectioned otoliths were used to estimate age and thus the year in which the individual was spawned by counting back from the time of capture. Population age structure (i.e. a ‘state' or condition at a point in time) was used to infer effects of flow variation on a rates-based process (i.e. recruitment). After controlling for mortality using recruitment index values, interannual variation in recruitment was modeled using multiple components of the flow regime quantified as indicators of hydrologic alteration (IHA) variables based on daily discharge data from USGS gaging stations in …
Date: August 2021
Creator: Reeves, Cole Griffin
System: The UNT Digital Library

Metabolic Responses to Crude Oil during Very Early Development in the Zebrafish (Danio rerio)

The present study sought to determine some morphological and physiological critical windows during very early development in zebrafish exposed to crude oil. I hypothesized that exposed zebrafish would present a decrease in survival rate and body mass, and an increase in routine oxygen consumption (ṀO2), and critical oxygen tension (PCrit). To test these hypotheses, zebrafish were acutely exposed (24 h) during different days of development (1 to 6 days post-fertilization, dpf) to different concentrations of high-energy water-accommodated fractions (HEWAFs). The endpoints of survival, body mass, routine oxygen consumption, and critical oxygen partial pressure were measured at 7 dpf. Survival rate decreased based on the exposure concentration but not as a function of the day of crude oil exposure. No significant effects were found in PCrit. Body mass was reduced by the different concentrations of HEWAF, with the size of the effect varying with exposure day, with the effect strongest on when exposure occurred at 2 and 3 dpf. Oxygen consumption (ṀO2) differed significantly depending upon the day of exposure in fish exposed to crude oil. Specifically, HEWAF exposure significantly increased ṀO2 in larvae exposed at 3 dpf (9.081 µmol O2/g/h, ±0.559) versus 2 dpf (6.068 µmol O2/g/h, ±0.652) and 6 …
Date: August 2020
Creator: Vazquez Roman, Karem Nathalie
System: The UNT Digital Library

Neurotoxic Effects of Polycyclic Aromatic Hydrocarbons in Vertebrates, from Behavioral to Cellular Levels

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental toxicants found in anthropogenic mixtures such as crude oil, air pollution, vehicle exhaust, and in some natural combustion reactions. Single PAHs such as benzo[a]pyrene (BaP) also impact fish behavior when animals are exposed in early life stages and for short periods of time. Aquatic animals such as fish may encounter BaP through road runoff and oil spills, but few studies have examined the impact of aqueous exposure on adult fish, and fewer have examined the resulting fitness-relevant behavioral consequences of BaP and PAH mixtures and their long-term persistence. This dissertation targets this gap in the literature by examining how aqueous exposure to BaP influences anxiety-like behavior, learning, and memory in adult zebrafish, and how parental exposure to the PAH mixture, crude oil, combined with hypoxia affects social and exploratory behavior in unexposed larval zebrafish. We found that learning and memory were not affected by 24 hour exposure to BaP, that anxiety-like behavior was minimally affected, and that locomotor parameters such as distance moved and times spent in darting and immobile states were significantly altered by exposure to BaP. Additionally, we found that parental exposure to crude oil and hypoxia decreased larval velocity. Additionally, …
Date: July 2023
Creator: Dunton, Alicia D.
System: The UNT Digital Library
Greater, Lesser, Guessers: A Look into the Hybridization of Greater and Lesser Prairie-Chickens (open access)

Greater, Lesser, Guessers: A Look into the Hybridization of Greater and Lesser Prairie-Chickens

My thesis focuses on the conservation consequences of the hybridization of Lesser Prairie-Chickens in Kansas. Specifically, examining how past land management practices altering the species ranges impact the distinctiveness of Lesser Prairie-Chickens. Each chapter is an individual publication that addresses if the Greater and Lesser Prairie-Chicken are distinct when applying the morphological and biological species concepts. Chapter 2 compares the evolutionary history and morphological construct of Lesser Prairie-Chickens and other Galliformes using morphometric analysis. Chapter 3 uses low-resolution microsatellite data to reflect recent changes at the population level. This study aims to observe the Greater and Lesser Prairie-Chicken using the morphological and biological species concepts, two of the many species concepts, to determine the distinctiveness and rate of hybridization for these closely related species.
Date: May 2023
Creator: Stein, Carleigh M.
System: The UNT Digital Library

The Effect of Developmental Hypoxia on Cardiac Physiology in Three Species: Alligator mississippiensis, Chelydra serpentina, and Danio rerio

In this dissertation, I explored the effects of developmental hypoxia on heart contractility in three separate species of ectotherms: the common snapping turtle (Chelydra serpentina), the American alligator (Alligator mississippiensis), and the zebrafish (Danio rerio). I began with the common snapping turtle and tested whether the utilization of the sarcoplasmic reticulum was altered in response to developmental hypoxia. In the next two chapters, developmental hypoxia of the American alligator was explored studying how the cardiac tissue was affected, specifically in physiological stressors, sarcoplasmic reticulum utilization and sensitivity to pharmacological increases in contractility. The last chapter explored how zebrafish heart contractility was altered in response to chronic hypoxia from egg to adult. Findings from these chapters suggest that while developmental hypoxia did alter cardiac contractility, it did not alter the response of the heart to physiological stressors such as increased heart rate or under hypoxia. Overall, these findings contribute to increasing the current understanding of how developmental hypoxia alters the cardiovascular system but with an emphasis on the cardiac tissue level.
Date: December 2023
Creator: Smith, Brandt Ragan
System: The UNT Digital Library

Acute and Sublethal Impacts of Crude Oil Photo-Induced Toxicity in an Early Life Stage Marine Fish (Sciaenops ocellatus) and Invertebrate (Americamysis bahia)

We investigated the modifying effects of ultraviolet (UV) light and chemical dispersant (Corexit 9500A) on crude oil toxicity in juvenile mysids (≤ 24 h) (Americamysis bahia) and larval red drum (24-72 hpf) (Sciaenops ocellatus). These results demonstrate that crude oil toxicity significantly increases with co-exposure to environmentally relevant UV levels in both species, indicating photo-induced toxicity. This toxicity was further exacerbated by the application of chemical dispersants which increased the dissolution and concentration of oil-derived polycyclic aromatic hydrocarbons (PAHs) in test solutions. To better understand the mechanisms and initiating events of this observed photo-induced toxicity, the incidence of apoptotic cell death and global transcriptomic changes were assessed in larval red drum (24-72 hpf) following co-exposure to crude oil and UV. These results showed that co-exposure to UV and low concentrations of crude oil (<1 µg/L ∑PAH50) induced apoptotic cell death in skin and eye tissue and altered transcriptomic pathways related to visual processing and dermatological disease. To link these cellular and molecular impacts of photo-induced toxicity to apical endpoints of ecological performance, sublethal impacts to growth, metabolic rate, and visually mediated behaviors were explored in larval red drum at 2 developmental stages. These results suggested that earlier life stages may …
Date: December 2023
Creator: Leads, Rachel Renee
System: The UNT Digital Library

Ecosystem Services and Sustainability: A Framework for Improving Decision-Making in Urban Areas

Ecosystem services are the varied goods and benefits provided by ecosystems that make human life possible. This concept has fostered scientific explorations of the services that nature provides to people with the goal of sustaining those services for future generations. As the world becomes increasingly urban, ecosystems are reshaped, and services are degraded. Provisioning and regulating ecosystem services, landscape planning, decision making, and agricultural systems and technologies play a distinctive role in feeding and sustaining the expanding urban population. Hence, the integrated assessment of these coupled components is necessary to understand food security and sustainable development. Nevertheless, frameworks that incorporate ecosystem services, urbanization, and human wellbeing are still scarce due to several conceptual and methodological gaps that challenge this assessment. As a consequence, these frameworks are not operationalized, and ecosystem services rarely receive proper attention in decision making. This dissertation seeks to improve our understanding of the role of ecosystem services at the landscape level and provides an approach for operationalizing decisions that affect sustainable practices and human wellbeing.
Date: May 2022
Creator: Valencia Torres, Angélica
System: The UNT Digital Library

Developing a Generalizable Two-Input Genetic AND Logic Gate in Arabidopsis thaliana for Multi-Signal Processing

With effective engineering using synthetic biology approaches, plant-based platforms could conceivably be designed to minimize the production costs and wastes of high-value products such as medicines, biofuels, and chemical feedstocks that would otherwise be uneconomical. Additionally, modern agricultural crops could be engineered to be more productive, resilient, or restorative in different or rapidly changing environments and climates. To achieve these complex goals, information-processing genetic devices and circuits containing multiple interacting parts that behave predictably must be developed. A genetic Boolean AND logic gate is a device that computes the presence or absence of two inputs (signals, stimuli) and produces an output (response) only if both inputs are present. Here, we optimized individual genetic components and used synthetic protein heterodimerizing domains to rationally assemble genetic AND logic gates that integrate two hormonal inputs in whole plants. These AND gates produce an output only in the presence of both abscisic acid and auxin, but not when either or neither hormone is present. Furthermore, we demonstrate the AND gate can also integrate two plant stresses, cold temperature and bacterial infection, to produce a specific response. The design principles used here are generalizable, and therefore multiple orthogonal AND gates could be assembled and rationally …
Date: December 2022
Creator: Anderson, Charles Edgar
System: The UNT Digital Library
Acute Toxicity of Crude Oil Exposures to Early Life Stage Teleosts: Contribution of Impaired Renal Function and Select Environmental Factors (open access)

Acute Toxicity of Crude Oil Exposures to Early Life Stage Teleosts: Contribution of Impaired Renal Function and Select Environmental Factors

Oil spills are well-known adverse anthropogenic events, as they can induce severe impacts on the environment and negative economic consequences. Still, much remains to be learned regarding the effects of crude oil exposure to aquatic organisms. The objectives of this dissertation were to fill some of those knowledge gaps by examining the effects of Deepwater Horizon (DWH) crude oil exposure on teleost kidney development and function. To this end, I analyzed how these effects translate into potential osmoregulatory impairments and investigated the interactive effects of ubiquitous natural factors, such as dissolved organic carbon (DOC) and ultraviolet (UV) light, on acute crude oil toxicity. Results demonstrated that acute early life stage (ELS) crude oil exposure induces developmental defects to the primordial kidney in teleost fish (i.e., the pronephros) as evident by alterations in: (1) transcriptional responses of key genes involved in pronephros development and function and (2) alterations in pronephros morphology. Crude oil-exposed zebrafish (Danio rerio) larvae presented defective pronephric function characterized by reduced renal clearance capacity and altered filtration selectivity, factors that likely contributed to the formation of edema. Latent osmoregulatory implications of crude oil exposure during ELS were observed in red drum (Sciaenops ocellatus) larvae, which manifested reduced survival …
Date: August 2022
Creator: Bonatesta, Fabrizio
System: The UNT Digital Library
The Development of Potential Therapeutic Anti-Myosin S2 Peptides that Modulate Contraction and Append to the Heart Homing Adduct Tannic Acid without Noticeable Effect on Their Functions (open access)

The Development of Potential Therapeutic Anti-Myosin S2 Peptides that Modulate Contraction and Append to the Heart Homing Adduct Tannic Acid without Noticeable Effect on Their Functions

This dissertation aimed to explore the S2 region with an attempt to modulate its elasticity in order to tune the contraction output. Two peptides, the stabilizer and destabilizer, showed high potential in modifying the S2 region at the cellular level, thus they were prepared for animal model testing. In this research, (i) S2 elasticity was studied, and the stabilizer and destabilizer peptides were built to tune contraction output through modulating S2 flexibility; (ii) the peptides were attached to heart homing adducts and the bond between them was confirmed; and (iii) it was shown that minor changes were imposed on the modulating peptides' functionality upon attaching to the heart homing adducts. S2 flexibility was confirmed through comparing it to other parts of myosin using simulated force spectroscopy. Modulatory peptides were built and computationally tested for their efficacy through interaction energy measurement, simulated force spectroscopy and molecular dynamics; these were attached to heart homing adducts for heart delivery. Interaction energy tests determined that tannic acid (TA) served well for this purpose. The stoichiometry of the bond between the TA and the modulating peptides was confirmed using mass spectroscopy. The functionality of the modulating peptides was shown to be unaltered through expansion microscopy …
Date: May 2021
Creator: Qadan, Motamed
System: The UNT Digital Library
CO2 Transport and Acid-Base Status during Fluctuations in Metabolic Status in Reptiles (open access)

CO2 Transport and Acid-Base Status during Fluctuations in Metabolic Status in Reptiles

Reptiles can often experience perturbations that greatly influence their metabolic status (e.g., temperature, exercise, digestion, and ontogeny). The most common cause of fluctuations in metabolic status in post-embryonic reptiles is arguably digestion and physical activity (which will be further referred to as exercise). The objective of this thesis is to determine the mechanisms involved in CO2 transport during digestion, determine the mechanisms that allow for the maintenance of acid-base homeostasis during digestion, and observing the effect of an understudied form of exercise in semi-aquatic reptiles on the regulation of metabolic acidosis and base deficit. This dissertation provided evidence for potentially novel and under investigated mechanisms for acid-base homeostasis (e.g., small intestine and tissue buffering capacity; Chapters 3 & 4), while also debunking a proposed hypothesis for the function of an anatomical feature that still remains a mystery to comparative physiologist (Chapter 2). This thesis is far from systematic and exhaustive in its approach, however, the work accomplished in this dissertation has become the foundation for multiple distinct paths for ecologically relevant investigations of the regulation of metabolic acidosis/alkalosis in reptiles.
Date: December 2021
Creator: Conner, Justin Lawrence
System: The UNT Digital Library
Conservation, Connectivity, and Coexistence: Understanding Corridor Efficacy in Fragmented Landscapes (open access)

Conservation, Connectivity, and Coexistence: Understanding Corridor Efficacy in Fragmented Landscapes

Conservation corridors, areas of land connecting patches of natural land cover, are frequently cited and implemented as a restorative strategy to counteract fragmentation. Current corridor ecology focuses on experimental corridor systems or designed and built conservation corridors to assess functionality. Such systems and designs are typically short, straight swaths of homogenous land cover with unambiguous transitions between patches. Quantifying the degree to which amorphous landscape configurations, tortuosity, and heterogeneity of land cover and land uses within the corridor has on functional connectedness is a crucial yet overlooked component of corridor efficacy studies. Corridor literature lacks a robust and repeatable methodology for delineating existing landscape elements, recognizing arbitrary edges, and identifying the start and end of ambiguous transitions between the patches and corridor. Using a set of landscapes being studied as part of a global assessment of corridor efficacy, I designed a workflow that standardizes the boundary of corridor-patch interfaces. The proposed method is a quantitative and repeatable approach that minimizes the subjectivity in corridor delineations. This research investigates the degree to which the existence of a corridor modifies the structural and functional connectivity between patches connected by a corridor compared to an intact reference area.
Date: May 2023
Creator: Long, Amanda M.
System: The UNT Digital Library

Temperature Change and Its Consequences for the Physiology of the Eurythermic Sheepshead Minnow (Cyprinodon variegatus)

The estuarine sheepshead minnow (Cyprinodon variegatus) is the most eurythermic fish species, with a thermal tolerance window between 0.6°C and 45.1°C. However, little is known about the physiological mechanisms that allow this species to survive this temperature range. In order to understand how sheepshead minnow physiology is affected by temperature acclimation and acute changes in temperature, I conducted research on this species using a multi-level approach. I began at the organismal level, and examined the effects of these temperature changes on the sheepshead minnow's metabolic rate and swimming performance. The next chapter investigated the effects of changing temperatures on cardiac function (i.e., tissue/organ specific effects). In the final chapter, I conducted research at the sub-cellular level, and determined how mitochondrial bioenergetics / function is impacted by changing temperatures. This research shows that while sheepshead minnows are able to sustain heart function and mitochondrial respiration over a broad range of temperatures; they also display a plastic temperature response which is associated with the downregulation of standard metabolic rate and cardiac remodeling to maintain force generation. Collectively, these physiological responses may contribute to the sheepshead minnow's ability to maintain physiological and organismal function across a large temperature range.
Date: August 2022
Creator: Reynolds, Amanda Caroline
System: The UNT Digital Library

Investigating the Effects of Traffic-Generated Air-Pollution on the Microbiome and Immune Responses in Lungs of Wildtype Mice

There is increasing evidence indicating that exposure to air pollutants may be associated with the onset of several respiratory diseases such as allergic airway disease and chronic obstructive pulmonary disorder (COPD). Many lung diseases demonstrate an outgrowth of pathogenic bacteria belonging to the Proteobacteria phylum, and the incidence of occurrence of these diseases is higher in heavily polluted regions. Within the human body, the lungs are among the first to be exposed to the harmful effects of inhaled pollutants and microbes. Research in the past few decades have expounded on the air-pollution-induced local and systemic inflammatory responses, but the involvement of the lung microbial communities has not yet been well-characterized. Lungs were historically considered to be sterile, but recent advances have demonstrated that the lower respiratory tract is replete with a wide variety of microorganisms - both in health and disease. Recent studies show that these lung microbes may play a significant role in modulating the immune environment by inducing IgA and mucus production. Air pollutants have previously been shown to alter intestinal bacterial populations that increase susceptibility to inflammatory diseases; however, to date, the effects of traffic-generated air pollutants on the resident microbial communities on the lungs have not …
Date: December 2020
Creator: Daniel, Sarah
System: The UNT Digital Library