Analysis of the Cytochrome P450 and UDP-Glucuronosyltransferase Families and Vitamin D3- Supplementation in Anoxia Survival in Caenorhabditis elegans

Alteration in diet and knockdown of detoxification genes impacts the response of C. elegans to oxygen deprivation stress. I hypothesized that feeding worms a vitamin D3-supplementation diet would result in differential oxygen deprivation stress response. We used a combination of wet lab and transcriptomics approach to investigate the effect of a vitamin-D3 supplemented diet on the global gene expression changes and the anoxia response phenotype of C. elegans (Chapter 2). C. elegans genome consists of 143 detoxification genes (cyp and ugt). The presence of a significant number of genes in these detoxification families was a challenge with identifying and selecting specific cyp and ugt genes for detailed analysis. Our goal was to understand the evolution, phylogenetic, and expression of the detoxification enzymes CYPs and UGTs in C. elegans (Chapter 3). We undertook a phylogenetic and bioinformatics approach to analyze the C. elegans, detoxification family. Phylogenetic analysis provided insight into the association of the human and C. elegans xenobiotic/endobiotic detoxification system. Protein coding genes in C. elegans have been predicted to be human orthologs. The results of this work demonstrate the role of C. elegans in the identification and characterization of vitamin D3 induced alterations in gene expression profile and anoxia …
Date: December 2020
Creator: Agarwal, Sujata
System: The UNT Digital Library

Impact of Anti-S2 Peptides on a Variety of Muscle Myosin S2 Isoforms and Hypertrophic Cardiomyopathy Mutants Revealed by Fluorescence Resonance Energy Transfer and Gravitational Force Spectroscopy

Myosin subfragment-2 (S2) is an intrinsically unstable coiled coil. This dissertation tests if the mechanical stability of myosin S2 would influence the availability of myosin S1 heads to actin thin filaments. The elevated instability in myosin S2 coiled coil could be one of the causes for hypercontractility in Familial Hypertrophic Cardiomyopathy (FHC). As hypothesized FHC mutations, namely E924K and E930del, in myosin S2 displayed an unstable myosin S2 coiled coil compared to wild type as measured by Fluorescence Resonant Energy Transfer (FRET) and gravitational force spectroscopy (GFS). To remedy this, anti-S2 peptides; the stabilizer and the destabilizer peptides by namesake were designed in our lab to increase and decrease the stability of myosin S2 coiled coil to influence the actomyosin interaction. Firstly, the effectiveness of anti-S2 peptides were tested on muscle myosin S2 peptides across MYH11 (smooth), MYH7 (cardiac), and MYH2 (skeletal) with GFS and FRET. The results demonstrated that the mechanical stability was increased by the stabilizer and decreased by the destabilizer across the cardiac and skeletal myosin S2 isoform but not for the smooth muscle isoform. The destabilizer peptide had dissociation binding constants of 9.97 × 10-1 μM to MYH7 isoform, 1.00 μM to MYH2 isoform, and no …
Date: August 2020
Creator: Aboonasrshiraz, Negar
System: The UNT Digital Library

Metabolic Responses to Crude Oil during Very Early Development in the Zebrafish (Danio rerio)

The present study sought to determine some morphological and physiological critical windows during very early development in zebrafish exposed to crude oil. I hypothesized that exposed zebrafish would present a decrease in survival rate and body mass, and an increase in routine oxygen consumption (ṀO2), and critical oxygen tension (PCrit). To test these hypotheses, zebrafish were acutely exposed (24 h) during different days of development (1 to 6 days post-fertilization, dpf) to different concentrations of high-energy water-accommodated fractions (HEWAFs). The endpoints of survival, body mass, routine oxygen consumption, and critical oxygen partial pressure were measured at 7 dpf. Survival rate decreased based on the exposure concentration but not as a function of the day of crude oil exposure. No significant effects were found in PCrit. Body mass was reduced by the different concentrations of HEWAF, with the size of the effect varying with exposure day, with the effect strongest on when exposure occurred at 2 and 3 dpf. Oxygen consumption (ṀO2) differed significantly depending upon the day of exposure in fish exposed to crude oil. Specifically, HEWAF exposure significantly increased ṀO2 in larvae exposed at 3 dpf (9.081 µmol O2/g/h, ±0.559) versus 2 dpf (6.068 µmol O2/g/h, ±0.652) and 6 …
Date: August 2020
Creator: Vazquez Roman, Karem Nathalie
System: The UNT Digital Library

Traffic-Generated Air Pollution-Exposure Mediated Expression of Factors Associated with Progression of Multiple Sclerosis in a Female Polipoprotein E Knockout Mouse Model

Environmental air pollution is one risk factor associated with the onset and progression of multiple sclerosis (MS). In this project, we investigated the effects of ubiquitous traffic-generated pollutants, namely a mixture of gasoline and diesel vehicle exhaust (MVE), on signaling pathways associated with the pathophysiology of MS in the central nervous system (CNS) of either ovary intact (ov+) or ovariectomized (ov-) female Apolipoprotein (Apo) E-/-. Specifically, we investigated whether a subchronic inhalation exposure to MVE (200 PM μg/m3; 6 hr/d, 7d/wk, 30d) vs. filtered air (FA) controls altered myelination, T cell infiltration, blood-brain barrier (BBB) integrity, or production of reactive oxygen species (ROS) and expression of neuroinflammation markers in the CNS ov+ and ov- Apo E-/- mice. Our results revealed that inhalation exposure to MVE resulted in increased demyelination and CD4+ and CD8+ T cell infiltration, associated with alterations in BBB integrity. Disruption of the BBB was evidenced by decreased tight junction (TJ) protein expression, increased matrix metalloproteinase (MMPs) activity, and increased permeability of immunoglobin (Ig) G, which were more pronounced in the MVE ov- group. Moreover, MVE-exposure also promoted ROS and neuroinflammatory signaling in the CNS of ov+ and ov- mice, compared to FA groups. To analyze mechanisms that …
Date: December 2020
Creator: Adivi, Anna
System: The UNT Digital Library
Analysis of N-Acylethanolamines in the Oilseed Crop Camelina sativa (open access)

Analysis of N-Acylethanolamines in the Oilseed Crop Camelina sativa

To better understand the nature and function of N-acylethanolamines (NAEs) in Camelina sativa, we used mass spectrometry analysis to identify and quantify NAE types in developing seeds, desiccated seeds and seedlings. Developing seeds showed a differential increase in individual NAE species and an overall increase in NAE content with seed development and maturation. The NAE composition in mature, desiccated seeds mostly reflected the total fatty acid composition in the seed tissues, except for a noted absence of 11-eicosenoic (20C monounsaturated) fatty acid in the NAE pool. During seed stratification and seedling growth, individual NAE species were depleted at similar rates. Simulated drought treatments during seedling development resulted in a significant rise in NAE levels for the major 18C NAE types compared with untreated seedlings. Arabidopsis and Camelina mutants with reported altered fatty acid profiles were analyzed for their NAE compositions; both Arabidopsis and Camelina had relatively similar changes between compositions of total seed fatty acids and NAEs. Furthermore, seeds were analyzed from transgenic Arabidopsis and Camelina with engineered, non-native, long-chain polyunsaturated fatty acids (18C, 20C and 22C), and the results showed the production of novel N-acylphosphatidylethanolamines (presumed precursors of NAEs) and NAEs with the same long acyl chains. These results …
Date: August 2020
Creator: Corley, Chase D
System: The UNT Digital Library
Role of 5.8S rRNA in Zebrafish and Human Blood Coagulation (open access)

Role of 5.8S rRNA in Zebrafish and Human Blood Coagulation

Hemolytic disorders are characterized by hemolysis and are prone to thrombosis. Previously, it has been shown that the RNA released from damaged blood cells activates clotting. However, the nature of RNA released from hemolysis is still elusive. We found that after hemolysis, the red blood cells from both zebrafish and humans release 5.8S rRNA. This RNA activated coagulation in zebrafish and human plasmas. Using both natural and synthetic 5.8S rRNA and its synthetic truncated fragments, we found that the 3'-end 26 nucleotide-long RNA (3'-26 RNA) and its stem-loop secondary structure were necessary and sufficient for clotting activity. Corn trypsin inhibitor (CTI), a coagulation factor XII (FXII) inhibitor blocked 3'-26 RNA-mediated coagulation activation of both zebrafish and human plasma. CTI also inhibited zebrafish coagulation in vivo. 5.8S rRNA monoclonal antibody inhibited both 5.8S rRNA- and 3'-26 RNA-mediated zebrafish coagulation activity. Both 5.8S rRNA and 3'-26 RNA activates normal human plasma but did not activate FXII-deficient human plasma. Taken together, these results suggested that the activation of zebrafish plasma is via FXII-like protein. Since zebrafish has no FXII and hepatocyte growth factor activator (Hgfac) has sequence similarities to FXII, we knocked down the hgfac in adult zebrafish. We found that plasma from …
Date: December 2020
Creator: Alharbi, Abdulmajeed Haya M.
System: The UNT Digital Library
A Genetic Approach to Identify Proteins that Interact with Eukaryotic Microtubule Severing Proteins via a Yeast Two Hybrid System (open access)

A Genetic Approach to Identify Proteins that Interact with Eukaryotic Microtubule Severing Proteins via a Yeast Two Hybrid System

Microtubules (MT) are regulated by multiple categories of proteins, including proteins responsible for severing MTs that are therefore called MT-severing proteins. Studies of katanin, spastin, and fidgetin in animal systems have clarified that these proteins are MT-severing. However, studies in plants have been limited to katanin p60, and little is known about spastin or fidgetin and their function in plants. I looked at plant genomes to identify MT-severing protein homologues to clarify which severing proteins exist in plants. I obtained data from a variety of eukaryotic species to look for MT-severing proteins using homology to human proteins and analyzed these protein sequences to obtain information on the evolution of MT-severing proteins in different species. I focused this analysis on MT-severing proteins in the maize and Arabidopsis thaliana genomes. I created evolutionary phylogenetic trees for katanin-p60, katanin-p80, spastin, and fidgetin using sequences from animal, plant, and fungal genomes. I focused on Arabidopsis spastin and worked to understand its functionality by identifying protein interaction partners. The yeast two-hybrid technique was used to screen an Arabidopsis cDNA library to identify putative spastin interactors. I sought to confirm the putative protein interactions by using molecular tools for protein localization such as the YFP system. …
Date: May 2020
Creator: Alhassan, Hassan H
System: The UNT Digital Library