Degree Discipline

Head Trauma Release of Histamine from Dural Mast Cells Alters Blood-Brain Barrier: Attenuation with Zolantidine (open access)

Head Trauma Release of Histamine from Dural Mast Cells Alters Blood-Brain Barrier: Attenuation with Zolantidine

This study employed a new model of mild-to-moderate head trauma to specifically identify the role of dural mast cell (MC) histamine in trauma-induced increased permeability in the blood-brain barrier (BBB). A single line was scored partially through the left dorsal parietal skull. Immediately following the trauma, degranulation was seen in 39% of the MCs on the left and in 2% on the right. After a 20 min survival period, left duras showed 55% with MC degranulation (fewer with complete degranulation) compared to 34% on the right. In the other experiments two parallel lines were scored following the injection of Evan's blue. Histamine assay showed histamine increased in the left cortex to 154% at 5 min, 174% at 10 min, and 151% at 20 min. Fluorescent quantitation of extravasated Evan's blue at 20 min following the trauma gave an increase of 1385% over the value measured for the right cortex. Zolantidine, a selective histamine H2 receptor antagonist, administered at 10- and 20- mg/kg 30 min before the trauma blocked 65% of the Evan's blue extravasation compared with the control and 2.5 mg group.
Date: December 2000
Creator: Laufer, Susan R.
System: The UNT Digital Library
Improved Fabrication and Quality Control of Substrate Integrated Microelectrode Arrays (open access)

Improved Fabrication and Quality Control of Substrate Integrated Microelectrode Arrays

Spontaneously active monolayer neuronal networks cultured on photoetched multimicroelectrode plates (MMEPs) offer great potential for use in studying neuronal networks. However, there are many problems associated with frequent, long-term use of MMEPs. The major problems include (1) polysiloxane insulation deterioration and breakdown, (2) and loss of gold at the gold electroplated indium-tin oxide (ITO) electrodes. The objective of this investigation was to correct these major problems. Quality control measures were employed to monitor MMEP fabrication variables. The phenotypes of polysiloxane degradation were identified and classified. Factors that were found to contribute most to insulation deterioration were (1) moisture contamination during MMEP insulation, (2) loss of the quartz barrier layer from excessive exposure to basic solutions, and (3) repetitive use in culture. As a result, the insulation equipment and methods were modified to control moisture-dependent insulation deterioration, and the KOH reprocessing solution was replaced with tetramethylguanidine to prevent damage to the quartz. The problems associated with gold electroplating were solved via the addition of a pulsed-DC application of gold in a new citrate buffered electroplating solution.
Date: May 2000
Creator: Zim, Bret E.
System: The UNT Digital Library