Quantifying the surface-subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies (open access)

Quantifying the surface-subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies

A central question addressed by the VERTIGO (VERtical Transport In the Global Ocean) study was 'What controls the efficiency of particle export between the surface and subsurface ocean'? Here, we present data from sites at ALOHA (N Central Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate them via a simple planktonic foodweb model, to subsurface particle export (150-500 m). Three key factors enable quantification of the surface-subsurface coupling: a sampling design to overcome the temporal lag and spatial displacement between surface and subsurface processes; data on the size-partitioning of Net Primary Production (NPP) and subsequent transformations prior to export; estimates of the ratio of algal- to faecal-mediated vertical export flux. At ALOHA, phytoplankton were characterized by low stocks, NPP, F{sub v}/F{sub m} (N-limited), and were dominated by picoplankton. The HNLC waters at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to low proportion of diatoms) between deployment 1 and 2. Prediction of export exiting the euphotic zone was based on size-partitioning of NPP, a copepod-dominated foodweb and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export was 20-22 mg POC m{sup -2} d{sup -1} at ALOHA …
Date: February 25, 2008
Creator: Boyd, P. W.; Gall, M. P.; Silver, M. W.; Bishop, J. K. B.; Coale, Susan L. & Bidigare, Robert R.
Object Type: Article
System: The UNT Digital Library
Particulate matter chemistry and dynamics in the Twilight Zone at VERTIGO ALOHA and K2 Sites (open access)

Particulate matter chemistry and dynamics in the Twilight Zone at VERTIGO ALOHA and K2 Sites

Understanding particle dynamics in the 'Twilight Zone' is critical to prediction of the ocean's carbon cycle. As part of the VERTIGO (VERtical Transformations In the Global Ocean) project, this rarely sampled regime extending from the base of the euphotic layer to 1000 m, was characterized by double-paired day/night Multiple Unit Large Volume in-situ Filtration System (MULVFS) deployments and by {approx}100 high-frequency CTD/transmissometer/turbidity sensor profiles. VERTIGO studies lasting three weeks, contrasted oligotrophic station ALOHA (22.75{sup o}N 158{sup o}W), sampled in June-July 2004, with a biologically productive location (47{sup o}N 161{sup o}E) near station K2 in the Oyashio, occupied July-August 2005. Profiles of major and minor particulate components (C{sub org}, N, P, Ca, Si, Sr, Ba, Mn) in <1, 1-51, and >51 {micro}m size fractions, in-water optics, neutrally buoyant sediment trap (NBST) fluxes, and zooplankton data were intercompared. MULVFS total C{sub org} and C-Star particle beam attenuation coefficient (C{sub P}) were consistently related at both sites with a 27 {micro}M m{sup -1} conversion factor. 26 At K2, C{sub P} profiles further showed a multitude of transient spikes throughout the water column and spike abundance profiles closely paralleled the double peaked abundance profiles of zooplankton. Also at K2, copepods contributed {approx}40% and 10%, …
Date: March 25, 2008
Creator: Bishop, James K.B. & Wood, T.J.
Object Type: Article
System: The UNT Digital Library
Novel QCD Phenomena at Electron-Proton Colliders (open access)

Novel QCD Phenomena at Electron-Proton Colliders

I discuss several novel phenomenological features of QCD which are observable in deep inelastic lepton-nucleon and lepton-nucleus scattering. Initial- and final-state interactions from gluon exchange, normally neglected in the parton model, have a profound effect on QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, the diffractive contribution to deep inelastic scattering, and the breakdown of the pQCD Lam-Tung relation in Drell-Yan reactions. Leading-twist diffractive processes in turn lead to nuclear shadowing and non-universal antishadowing--physics not incorporated in the light-front wavefunctions of the nucleus computed in isolation.
Date: July 25, 2008
Creator: Brodsky, Stanley J. & /SLAC /Durham U., IPPP
Object Type: Article
System: The UNT Digital Library
SLUDGE BATCH 5 ACCEPTANCE EVALUATION RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB5 QUALIFICATION SAMPLE PREPARED AT SRNL (open access)

SLUDGE BATCH 5 ACCEPTANCE EVALUATION RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB5 QUALIFICATION SAMPLE PREPARED AT SRNL

None
Date: September 25, 2008
Creator: Bannochie, C; Ned Bibler, N & David Diprete, D
Object Type: Report
System: The UNT Digital Library