Space searches with a quantum robot (open access)

Space searches with a quantum robot

Quantum robots are described as mobile quantum computers and ancillary systems that move in and interact with arbitrary environments. Their dynamics is given as tasks which consist of sequences of alternating computation and action phases. A task example is considered in which a quantum robot searches a space region to find the location of a system. The possibility that the search can be more efficient than a classical search is examined by considering use of Grover's Algorithm to process the search results. This is problematic for two reasons. One is the removal of entanglements generated by the (reversible) search process. The other is that (ignoring the entanglement problem), the search process in 2 dimensional space regions is no more efficient than a classical search. However quantum searches of higher dimensional space regions are more efficient than classical searches. Reasons why quantum robots are interesting independent of these results are briefly summarized.
Date: February 15, 2000
Creator: Benioff, P.
System: The UNT Digital Library
Attomole quantitation of protein separations with accelerator mass spectrometry (open access)

Attomole quantitation of protein separations with accelerator mass spectrometry

Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.
Date: December 15, 2000
Creator: Vogel, J. S.; Grant, P. G.; Buccholz, B. A.; Dingley, K. & Turteltaub, K. W.
System: The UNT Digital Library
Proceedings of the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) (open access)

Proceedings of the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

These proceedings contain papers prepared for the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), held 13-15 September 2000 in New Orleans, Louisiana. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), US Army Space and Missile Defense Command, Defense Special Weapons Agency (DSWA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and …
Date: September 15, 2000
Creator: Nichols, James W., LTC
System: The UNT Digital Library