Modeled Neutron and Charged-Particle Induced Nuclear Reaction Cross Sections for Radiochemistry in the Region of Yttrium, Zirconium, Niobium, and Molybdenum (open access)

Modeled Neutron and Charged-Particle Induced Nuclear Reaction Cross Sections for Radiochemistry in the Region of Yttrium, Zirconium, Niobium, and Molybdenum

We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron, proton, and deuteron induced nuclear reaction cross sections for targets ranging from strontium (Z = 38) to rhodium (Z = 45).
Date: June 13, 2006
Creator: Hoffman, R D; Kelley, K; Dietrich, F S; Bauer, R & Mustafa, M G
Object Type: Report
System: The UNT Digital Library
The Injection Laser System on the National Ignition Facility (open access)

The Injection Laser System on the National Ignition Facility

The National Ignition Facility (NIF) is currently the largest and most energetic laser system in the world. The main amplifiers are driven by the Injection Laser System comprised of the master oscillators, optical preamplifiers, temporal pulse shaping and spatial beam formatting elements and injection diagnostics. Starting with two fiber oscillators separated by up to a few angstroms, the pulse is phase modulated to suppress SBS and enhance spatial smoothing, amplified, split into 48 individual fibers, and then temporally shaped by an arbitrary waveform generator. Residual amplitude modulation induced in the preamplifiers from the phase modulation is also precompensated in the fiber portion of the system before it is injected into the 48 pre-amplifier modules (PAMs). Each of the PAMs amplifies the light from the 1 nJ fiber injection up to the multi-joule level in two stages. Between the two stages the pre-pulse is suppressed by 60 dB and the beam is spatially formatted to a square aperture with precompensation for the nonuniform gain profile of the main laser. The input sensor package is used to align the output of each PAM to the main laser and acquire energy, power, and spatial profiles for all shots. The beam transport sections split …
Date: December 13, 2006
Creator: Bowers, Mark; Burkhart, Scott; Cohen, Simon; Erbert, Gaylen; Heebner, John; Hermann, Mark et al.
Object Type: Article
System: The UNT Digital Library
ANALYSIS RESULTS FOR BUILDING 241 702-AZ A TRAIN (open access)

ANALYSIS RESULTS FOR BUILDING 241 702-AZ A TRAIN

This report presents the analyses results for three samples obtained under RPP-PLAN-28509, Sampling and Analysis Plan for Building 241 702-AZ A Train. The sampling and analysis was done in response to problem evaluation request number PER-2004-6139, 702-AZ Filter Rooms Need Radiological Cleanup Efforts.
Date: December 13, 2006
Creator: JB, DUNCAN; JM, FRYE; CA, COOKE; SW, LI & FJ, BROCKMAN
Object Type: Report
System: The UNT Digital Library
Sum-Frequency Generation from Chiral Media and Interfaces (open access)

Sum-Frequency Generation from Chiral Media and Interfaces

Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers.
Date: February 13, 2006
Creator: Ji, Na
Object Type: Thesis or Dissertation
System: The UNT Digital Library