Radiocarbon-Based Ages and Growth Rates of Bamboo Corals from the Gulf of Alaska (open access)

Radiocarbon-Based Ages and Growth Rates of Bamboo Corals from the Gulf of Alaska

Deep-sea coral communities have long been recognized by fisherman as areas that support large populations of commercial fish. As a consequence, many deep-sea coral communities are threatened by bottom trawling. Successful management and conservation of this widespread deep-sea habitat requires knowledge of the age and growth rates of deep-sea corals. These organisms also contain important archives of intermediate and deep-water variability, and are thus of interest in the context of decadal to century-scale climate dynamics. Here, we present {Delta}{sup 14}C data that suggest that bamboo corals from the Gulf of Alaska are long-lived (75-126 years) and that they acquire skeletal carbon from two distinct sources. Independent verification of our growth rate estimates and coral ages is obtained by counting seasonal Sr/Ca cycles and probable lunar cycle growth bands.
Date: December 12, 2004
Creator: Roark, E. B.; Guilderson, T. P.; Flood-Page, S.; Dunbar, R. B.; Ingram, B. L.; Fallon, S. J. et al.
Object Type: Article
System: The UNT Digital Library
CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES (open access)

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech …
Date: May 12, 2004
Creator: Rimmer, Hugh W.
Object Type: Report
System: The UNT Digital Library
Borehole Data Package for Four CY 2003 RCRA Wells 299-E27-4, 299-E27-21, 299-E27-22, and 299-E27-23 at Single-Shell Tank, Waste Management Area C, Hanford Site, Washington (open access)

Borehole Data Package for Four CY 2003 RCRA Wells 299-E27-4, 299-E27-21, 299-E27-22, and 299-E27-23 at Single-Shell Tank, Waste Management Area C, Hanford Site, Washington

Four new Resource Conservation and Recovery Act (RCRA) groundwater monitoring wells were installed at the single-shell tank farm Waste Management Area (WMA) C in fiscal year 2003 to fulfill commitments for well installations proposed in the draft Hanford Federal Facility Agreement and Consent Order milestone M-24-00. Well 299-E27-22, installed upgradient, was drilled through the entire uppermost unconfined aquifer to the basalt and wells 299-E27-4, 299-E27-21 and 299-E27-23 were drilled approximately 40 feet into the uppermost unconfined aquifer and installed downgradient of the WMA. Specific objectives for these wells include monitoring the impact, if any, that potential releases from inside the WMA may have on current groundwater conditions (i.e., improved network coverage) and differentiating upgradient groundwater contamination from contaminants released at the WMA. This report supplies the information obtained during drilling, characterization, and installation of the four new groundwater monitoring wells. This document also provides a compilation of hydrogeologic and well construction information obtained during drilling, well development, aquifer testing, and sample collection/analysis activities.
Date: May 12, 2004
Creator: Williams, Bruce A. & Narbutovskih, Susan M.
Object Type: Report
System: The UNT Digital Library
Institute for Scientific Computing Research Annual Report for Fiscal Year 2003 (open access)

Institute for Scientific Computing Research Annual Report for Fiscal Year 2003

The University Relations Program (URP) encourages collaborative research between Lawrence Livermore National Laboratory (LLNL) and the University of California campuses. The Institute for Scientific Computing Research (ISCR) actively participates in such collaborative research, and this report details the Fiscal Year 2003 projects jointly served by URP and ISCR.
Date: February 12, 2004
Creator: Keyes, D & McGraw, J
Object Type: Report
System: The UNT Digital Library
Argonne National Laboratory-East site environmental report for calendar year 2003. (open access)

Argonne National Laboratory-East site environmental report for calendar year 2003.

This report discusses the accomplishments of the environmental protection program at Argonne National Laboratory-East (ANL-E) for calendar year 2003. The status of ANL-E environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of ANL-E operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the ANL-E site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and ANL-E effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, ANL-E, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.
Date: August 12, 2004
Creator: Golchert, N. W. & Kolzow, R. G.
Object Type: Report
System: The UNT Digital Library
Argonne National Laboratory-East site environmental report for calendar year 2003. (open access)

Argonne National Laboratory-East site environmental report for calendar year 2003.

This report discusses the accomplishments of the environmental protection program at Argonne National Laboratory-East (ANL-E) for calendar year 2003. The status of ANL-E environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of ANL-E operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the ANL-E site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and ANL-E effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, ANL-E, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.
Date: August 12, 2004
Creator: Golchert, N. W. & Kolzow, R. G.
Object Type: Report
System: The UNT Digital Library