Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis (open access)

Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

The focus of this project is direct detection of DNAPL's specifically chlorinated solvents, via material property estimation from multi-fold surface ground-penetrating radar (GPR) data. We combine state-of-the-art GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects.
Date: December 9, 2004
Creator: Bradford, John H.; Holbrook, Stephen & Smithson, Scott B.
System: The UNT Digital Library
Simulation of Net Infiltration for Present-Day and Potential Future Climates (open access)

Simulation of Net Infiltration for Present-Day and Potential Future Climates

The purpose of this model report is to document the infiltration model used to estimate upper-bound, mean, and lower-bound spatially-distributed average annual net infiltration rates for present-day and potential future climates at Yucca Mountain, Nevada. Net infiltration is the component of infiltrated precipitation, snowmelt, or surface water run-on that has percolated below the zone of evapotranspiration as defined by the depth of the effective root zone. The estimates of net infiltration are primarily used for defining the upper boundary condition for the site-scale three-dimensional unsaturated zone (UZ) model. The UZ flow model is one of several process models abstracted by the total system performance assessment (TSPA) model used to evaluate performance of the repository at Yucca Mountain, Nevada. The net-infiltration model is important for assessing repository-system performance because output from this model provides the upper boundary condition for the UZ flow model used to generate flow fields; water percolating downward from the UZ will be the principal means by which radionuclides are potentially released to the saturated zone (SZ). The SZ is the principal pathway to the biosphere where the reasonably maximally exposed individual (RMEI) is exposed to radionuclides.
Date: November 9, 2004
Creator: Levitt, D.
System: The UNT Digital Library
Engineered Barrier System: Physical and Chemical Environment Model (open access)

Engineered Barrier System: Physical and Chemical Environment Model

The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are …
Date: February 9, 2004
Creator: Jolley, D. M.; Jarek, R. & Mariner, P.
System: The UNT Digital Library