Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin) (open access)

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. This year the project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Orla Petco, Inc., as the East Ford unit; it contained an estimated 19.8 million barrels (MMbbl) of original oil in place. Petrophysical characterization of the East Ford unit was accomplished by integrating core and log data and quantifying petrophysical properties from wireline logs. Most methods of petrophysical analysis that had been developed during an earlier study of the Ford Geraldine unit were successfully transferred to the East Ford unit. The approach that was used to interpret water saturation from resistivity logs, however, had to be modified because in some East Ford wells the log-calculated water saturation was too high and inconsistent with observations made during the …
Date: June 8, 1999
Creator: Dutton, S. P.; Flanders, W. A.; Guzman, J. I. & Zirczy, H.
Object Type: Report
System: The UNT Digital Library
Development of an Integrated Global Energy Model (open access)

Development of an Integrated Global Energy Model

The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E{sup 3}) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term ({approximately}2,100) context. The E{sup 3} model so developed was applied to create a Los Alamos presence in this E{sup 3} area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E{sup 3} model have been presented at a variety of national and international conferences and workshops. Through use of the E{sup 3} model Los Alamos was afforded the opportunity to participate in a multi-national E{sup 3} study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E{sup 3} model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project.
Date: July 8, 1999
Creator: Krakowski, Robert A.
Object Type: Report
System: The UNT Digital Library
Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants (open access)

Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO{sub 2} were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO{sub 2}, large photoelectrocatalytic effect for the reduction of CO{sub 2} was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO{sub 2} in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.
Date: November 8, 1999
Creator: Zheng, Junwei
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Preliminary studies on identification of inorganic species in complex mixtures by electrospray mass spectrometry in the counter ion mode (open access)

Preliminary studies on identification of inorganic species in complex mixtures by electrospray mass spectrometry in the counter ion mode

Suppression of mass spectral peaks due to matrix problem is a major hurdle to overcome during identification work. So far, preliminary studies have been done in investigating solutions containing various percentages of nitric and hydrochloric acid. Since other anions would also be present in real samples, also needed to be examined is how the extent of suppression of metal complexes by Cl{sup {minus}} compares with suppression by other anions such as PO{sub 4}{sup 3{minus}} or SO{sub 4}{sup 2{minus}}. If suppression of other anions is as severe as that of the chloride ion, then it would be virtually impossible to analyze unknown samples containing large amount of such anions by direct infusion electrospray mass spectrometry. It seems like a separation step is needed to separate these matrix anions from the metal complexes prior to putting the solution through the electrospray. However, separation of inorganic complexes can be difficult and has not been studied thoroughly as LC separation of bioorganic compounds. Both zinc and copper chloro complexes have been observed to be more tolerant to higher amount of chloride ion present in a solution compared to the group I and II metal chloro complexes. Other transition metals including the lanthanide complexes need …
Date: November 8, 1999
Creator: Mollah, Sahana
Object Type: Thesis or Dissertation
System: The UNT Digital Library
CROSS DRIFT ALCOVE/NICHE UTILITIES ANALYSIS (open access)

CROSS DRIFT ALCOVE/NICHE UTILITIES ANALYSIS

The purpose of this analysis is to provide the design basis and general arrangement requirements of the non-potable water, waste water, compressed air and ventilation (post excavation) utilities required in support of the Cross Drift alcoves and niches.
Date: July 8, 1999
Creator: Goodin, S.
Object Type: Report
System: The UNT Digital Library