Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project (open access)

Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. We investigated two processes for upgrading wheat …
Date: January 31, 2005
Creator: Hess, J.R
System: The UNT Digital Library
Seismic Evaluation of Hydorcarbon Saturation in Deep-Water Reservoirs (open access)

Seismic Evaluation of Hydorcarbon Saturation in Deep-Water Reservoirs

During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can …
Date: October 31, 2005
Creator: Batzle, Michael; Han, D-h; Gibson, R. & James, Huw
System: The UNT Digital Library
Improving Dryer and Press Efficiencies Through Combustion of Hydrocarbon Emissions (open access)

Improving Dryer and Press Efficiencies Through Combustion of Hydrocarbon Emissions

Emission control devices on dryers and presses have been legislated into the industry, and are now an integral part of the drying system. These devices consume large quantities of natural gas and electricity and down-sizing or eliminating them will provide major energy savings. The principal strategy taken here focuses on developing process changes that should minimize (and in some cases eliminate) the need for controls. A second approach is to develop lower-cost control options. It has been shown in laboratory and full-scale work that Hazardous Air Pollutants (HAPs) emerge mainly at the end of the press cycle for particleboard, and, by extension, to other prod-ucts. Hence, only the air associated with this point of the cycle need be captured and treated. A model for estimating terpene emissions in the various zones of veneer dryers has been developed. This should allow the emissions to be concentrated in some zones and minimized in others, so that some of the air could be directly released without controls. Low-cost catalysts have been developed for controlling HAPs from dryers and presses. Catalysts conventionally used for regenerative catalytic oxidizers can be used at much lower temperatures for treating press emissions. Fluidized wood ash is an especially …
Date: October 31, 2005
Creator: Banerjee, Sujit
System: The UNT Digital Library
Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities (open access)

Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities

The overall objective of this project was to evaluate the impact of key constituents captured from power plant air streams (principally arsenic and selenium) on the disposal and utilization of coal combustion products (CCPs). Specific objectives of the project were: (1) to develop a comprehensive database of field leachate concentrations at a wide range of CCP management sites, including speciation of arsenic and selenium, and low-detection limit analyses for mercury; (2) to perform detailed evaluations of the release and attenuation of arsenic species at three CCP sites; and (3) to perform detailed evaluations of the release and attenuation of selenium species at three CCP sites. Each of these objectives was accomplished using a combination of field sampling and laboratory analysis and experimentation. All of the methods used and results obtained are contained in this report. For ease of use, the report is subdivided into three parts. Volume 1 contains methods and results for the field leachate characterization. Volume 2 contains methods and results for arsenic adsorption. Volume 3 contains methods and results for selenium adsorption.
Date: December 31, 2005
Creator: Ladwig, K.
System: The UNT Digital Library
Defense Acquisitions: Assessments of Selected Major Weapon Programs (open access)

Defense Acquisitions: Assessments of Selected Major Weapon Programs

A letter report issued by the Government Accountability Office with an abstract that begins "The Department of Defense (DOD) is embarking on a number of efforts to enhance warfighting and the way the department conducts business. Major investments are being made to develop improved weapon systems to combat various threats to U.S. security. While the weapons that DOD ultimately develops have no rival in superiority, weapon systems acquisition remains a long-standing high-risk area. GAO's reviews over the past 30 years have found consistent problems with weapon acquisitions such as cost increases, schedule delays, and performance shortfalls. In addition, DOD faces several budgetary challenges that underscore the need to deliver its new major weapon programs within estimated costs and to obtain the most from those investments. DOD can help resolve these problems by using a more knowledge-based approach for developing new weapons. This report provides congressional and DOD decision makers with an independent, knowledge-based assessment of selected defense programs that identifies potential risks and needed actions when a program's projected attainment of knowledge diverges from the best practice. It can also highlight those programs that employ practices worthy of emulation by other programs. GAO plans to update and issue this report …
Date: March 31, 2005
Creator: United States. Government Accountability Office.
System: The UNT Digital Library
Big Sky Carbon Sequestration Partnership (open access)

Big Sky Carbon Sequestration Partnership

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified …
Date: December 31, 2005
Creator: Capalbo, Susan
System: The UNT Digital Library