Acoustic Energy: An Innovative Technology for Stimulating Oil Wells (open access)

Acoustic Energy: An Innovative Technology for Stimulating Oil Wells

The objective of this investigation was to demonstrate the effectiveness of sonication in reducing the viscosity of heavy crude oils. Sonication is the use of acoustic or sound energy to produce physical and/or chemical changes in materials, usually fluids. The goal of the first project phase was to demonstrate a proof of concept for the project objective. Batch tests of three commercially available, single-weight oils (30-, 90-, and 120-wt) were performed in the laboratory. Several observations and conclusions were made from this series of experiments. These include the following: (1) In general, the lower the acoustic frequency, the greater the efficiency in reducing the viscosity of the oils; (2) Sonication treatment of the three oils resulted in reductions in viscosity that ranged from a low of 31% to a high of 75%; and (3) The results of the first phase of the project successfully demonstrated that sonication could reduce the viscosity of oils of differing viscosity. The goal of the second project phase was to demonstrate the ability of sonication to reduce the viscosity of three crude oils ranging from a light crude to a heavy crude. The experiments also were designed to examine the benefits of two proprietary chemical …
Date: April 30, 2006
Creator: Edgar, Dorland E.; Peters, Robert W.; Johnson, Donald O.; Paulsen, P. David & Roberts, Wayne
System: The UNT Digital Library
Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs (open access)

Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, …
Date: April 30, 2006
Creator: Batzle, Michael
System: The UNT Digital Library
Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin (open access)

Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

This topical report covers the year 2 of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). The characterization of select dolomite reservoirs has been the major focus of our efforts in Phase II/Year 2. Fields have been prioritized based upon the availability of rock data for interpretation of depositional environments, fracture density and distribution as well as thin section, geochemical, and petrophysical analyses. Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in the 3 studied intervals (based upon initial fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. For the Niagaran (Silurian), a comprehensive high resolution sequence stratigraphic framework has been developed for a pinnacle reef in the northern reef trend …
Date: September 30, 2006
Creator: Grammer, G. Michael
System: The UNT Digital Library
Statutory Interpretation: General Principles and Recent Trends (open access)

Statutory Interpretation: General Principles and Recent Trends

None
Date: March 30, 2006
Creator: Costello, George
System: The UNT Digital Library
T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation (open access)

T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation

Characterization of stratigraphic sequences (T-R cycles or sequences) included outcrop studies, well log analysis and seismic reflection interpretation. These studies were performed by researchers at the University of Alabama, Wichita State University and McGill University. The outcrop, well log and seismic characterization studies were used to develop a depositional sequence model, a T-R cycle (sequence) model, and a sequence stratigraphy predictive model. The sequence stratigraphy predictive model developed in this study is based primarily on the modified T-R cycle (sequence) model. The T-R cycle (sequence) model using transgressive and regressive systems tracts and aggrading, backstepping, and infilling intervals or sections was found to be the most appropriate sequence stratigraphy model for the strata in the onshore interior salt basins of the Gulf of Mexico to improve petroleum stratigraphic trap and specific reservoir facies imaging, detection and delineation. The known petroleum reservoirs of the Mississippi Interior and North Louisiana Salt Basins were classified using T-R cycle (sequence) terminology. The transgressive backstepping reservoirs have been the most productive of oil, and the transgressive backstepping and regressive infilling reservoirs have been the most productive of gas. Exploration strategies were formulated using the sequence stratigraphy predictive model and the classification of the known petroleum …
Date: August 30, 2006
Creator: Mancini, Ernest A.
System: The UNT Digital Library
Feasibility of Large-Scale Ocean CO2 Sequestration (open access)

Feasibility of Large-Scale Ocean CO2 Sequestration

This report covers research accomplished during CY 2006 under a modification of a previous award. During this period we completed analysis of the acoustic detection and modeling of a rising deep-sea liquid CO{sub 2} plume, and published the results in a major journal. The results are applicable to detection of leakage of CO{sub 2} from the sea floor, either from natural CO{sub 2} vents, or from purposefully disposed CO{sub 2} in sub-sea geologic formations. In April 2006 we executed, in collaboration with colleagues from Massachusetts Institute of Technology, Oak Ridge National Laboratory, and Canada a novel at sea experiment on the creation of a sinking plume of a CO{sub 2} hydrate composite paste, extruded through nozzles designed by ORNL. The work showed that a sinking, and slowly dissolving, mass can be created at depths where the pure liquid (above) would rise far and fast. In August 2006 we executed a cruise to the massive exposed methane hydrates in Barkley Canyon, off-shore Vancouver Island. There we cored the exposed hydrates, and exposed the specimens on the sea floor at 850m depth to liquid CO{sub 2} in a 3 liter closed container. The object was to examine possible inter-conversion of methane hydrate …
Date: September 30, 2006
Creator: Brewer, Peter G.
System: The UNT Digital Library