Resource Type

INITIAL CHARACTERIZATIONS AND SRAT SIMULATIONS OF FOUR SLUDGE MATRIX STUDY SIMULANTS (open access)

INITIAL CHARACTERIZATIONS AND SRAT SIMULATIONS OF FOUR SLUDGE MATRIX STUDY SIMULANTS

The Savannah River National Laboratory (SRNL) initiated a sludge matrix study to evaluate the impact of changing insoluble solid composition on the processing characteristics of slurries in the Defense Waste Processing Facility (DWPF). Three compositional ranges were developed for three groups of elements in the waste. The first was high iron/low aluminum versus low iron/high aluminum. The second was high calcium-manganese/low nickel, chromium, and magnesium versus low calcium-manganese/high nickel, chromium, and magnesium. The third was high noble metals (Ag, Pd, Rh, Ru) versus low noble metals. These three options can be combined to form eight distinct sludge compositions. The sludge matrix study called for testing each of these eight simulants near the minimum acid required for nitrite destruction and at a second acid level that produced significant hydrogen by noble metal catalyzed decomposition of formic acid. Four simulants were prepared based on the four possible combinations of the Al/Fe and Mn-Ca/Mg-Ni-Cr options. Preliminary simulant preparation work has already been documented. The four simulants can be used for both high and low noble metal concentration testing and high and low acid testing. This report summarizes preliminary testing of each of the four simulants at low noble metals and low acid stoichiometry. …
Date: December 10, 2009
Creator: Koopman,D. & Lambert, D.
System: The UNT Digital Library
DWPF CATALYTIC HYDROGEN GENERATION PROGRAM - REVIEW OF CURRENT STATUS (open access)

DWPF CATALYTIC HYDROGEN GENERATION PROGRAM - REVIEW OF CURRENT STATUS

Significant progress has been made in the past two years in improving the understanding of acid consumption and catalytic hydrogen generation during the Defense Waste Processing Facility (DWPF) processing of waste sludges in the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME). This report reviews issues listed in prior internal reviews, describes progress with respect to the recommendations made by the December 2006 external review panel, and presents a summary of the current understanding of catalytic hydrogen generation in the DWPF Chemical Process Cell (CPC). Noble metals, such as Pd, Rh, and Ru, are historically known catalysts for the conversion of formic acid into hydrogen and carbon dioxide. Rh, Ru, and Pd are present in the DWPF SRAT feed as by-products of thermal neutron fission of {sup 235}U in the original waste. Rhodium appears to become most active for hydrogen as the nitrite ion concentration becomes low (within a factor of ten of the Rh concentration). Prior to hydrogen generation, Rh is definitely active for nitrite destruction to N{sub 2}O and potentially active for nitrite to NO formation. These reactions are all consistent with the presence of a nitro-Rh complex catalyst, although definite proof for the existence …
Date: July 10, 2009
Creator: Koopman, D.
System: The UNT Digital Library