Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship (open access)

Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship

Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources development and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well …
Date: June 1, 2000
Creator: Reynolds, Jesse L. & Narasimhan, T.N.
System: The UNT Digital Library
Microfabrication of an Implantable silicone Microelectrode array for an epiretinal prosthesis (open access)

Microfabrication of an Implantable silicone Microelectrode array for an epiretinal prosthesis

Millions of people suffering from diseases such as retinitis pigmentosa and macular degeneration are legally blind due to the loss of photoreceptor function. Fortunately a large percentage of the neural cells connected to the photoreceptors remain viable, and electrical stimulation of these cells has been shown to result in visual perception. These findings have generated worldwide efforts to develop a retinal prosthesis device, with the hope of restoring vision. Advances in microfabrication, integrated circuits, and wireless technologies provide the means to reach this challenging goal. This dissertation describes the development of innovative silicone-based microfabrication techniques for producing an implantable microelectrode array. The microelectrode array is a component of an epiretinal prosthesis being developed by a multi-laboratory consortium. This array will serve as the interface between an electronic imaging system and the human eye, directly stimulating retinal neurons via thin film conducting traces. Because the array is intended as a long-term implant, vital biological and physical design requirements must be met. A retinal implant poses difficult engineering challenges due to the size of the intraocular cavity and the delicate retina. Not only does it have to be biocompatible in terms of cytotoxicity and degradation, but it also has to be structurally …
Date: June 10, 2003
Creator: Maghribi, M
System: The UNT Digital Library
Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography (open access)

Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography

Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonance (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.
Date: June 27, 2002
Creator: Roberts, Kenneth Paul
System: The UNT Digital Library
A Study of The Standard Model Higgs, WW and ZZ Production in Dilepton Plus Missing Transverse Energy Final State at CDF Run II (open access)

A Study of The Standard Model Higgs, WW and ZZ Production in Dilepton Plus Missing Transverse Energy Final State at CDF Run II

We report on a search for Standard Model (SM) production of Higgs to WW* in the two charged lepton (e, {mu}) and two neutrino final state in p{bar p} collisions at a center of mass energy {radical}s = 1.96 TeV. The data were collected with the CDF II detector at the Fermilab Tevatron and correspond to an integrated luminosity of 1.9fb{sup -1}. The Matrix Element method is developed to calculate the event probability and to construct a likelihood ratio discriminator. There are 522 candidates observed with an expectation of 513 {+-} 41 background events and 7.8 {+-} 0.6 signal events for Higgs mass 160GeV/c{sup 2} at next-to-next-to-leading logarithmic level calculation. The observed 95% C.L. upper limit is 0.8 pb which is 2.0 times the SM prediction while the median expected limit is 3.1{sub -0.9}{sup +1.3} with systematics included. Results for 9 other Higgs mass hypotheses ranging from 110GeV/c{sup 2} to 200GeV/c{sup 2} are also presented. The same dilepton plus large transverse energy imbalance (E{sub T}) final state is used in the SM ZZ production search and the WW production study. The observed significance of ZZ {yields} ll{nu}{nu} channel is 1.2{sigma}. It adds extra significance to the ZZ {yields} 4l channel …
Date: June 1, 2008
Creator: Hsu, Shih-Chieh & /UC, San Diego
System: The UNT Digital Library
A Next-to-Leading-Order QCD Analysis of Neutrino-Iron Structure Functions at the Tevatron (open access)

A Next-to-Leading-Order QCD Analysis of Neutrino-Iron Structure Functions at the Tevatron

Nucleon structure functions measured in neutrino-iron and antineutrino-iron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 GeV. The structure functions F{sub 2} and xF{sub 3} are compared with the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives value of {Lambda}NLO,(4)/MS = 337 {+-} 28 (exp.) MeV, which corresponds to {alpha}{sub S}(M{sub Z}{sup 2}) = 0.119 {+-} 0.002 (exp.) {+-} 0.004 (theory), and with a gluon distribution given by xG(x,Q{sub 0}{sup 2} = 5GeV{sup 2}) = (2.22 {+-} 0.34) {times} (1 {minus} x){sup 4.65{+-}0.68}.
Date: June 1, 1997
Creator: Seligman, W. G.
System: The UNT Digital Library