Resource Type

Single-Spin Asymmetries and Transversity in QCD (open access)

Single-Spin Asymmetries and Transversity in QCD

Initial- and final-state interactions from gluon exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, as well as nuclear shadowing and antishadowing-leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. The physics of such processes thus require the understanding of QCD at the amplitude level; in particular, the physics of spin requires an understanding of the phase structure of final-state and initial-state interactions, as well as the structure of the basic wavefunctions of hadrons themselves. I also discuss transversity in exclusive channels, including how one can use single-spin asymmetries to determine the relative phases of the timelike baryon form factors, as well as the anomalous physics of the normal-normal spin-spin correlation observed in large-angle proton-proton elastic scattering. As an illustration of the utility of light-front wavefunctions, the transversity distribution of a single electron is computed, as defined from its two-particle QED quantum fluctuations.
Date: December 14, 2005
Creator: Brodsky, Stanley J.
System: The UNT Digital Library
Measurement of the CKM Angle alpha with the B-factories. (open access)

Measurement of the CKM Angle alpha with the B-factories.

B-meson decays involving b {yields} u transitions are sensitive to the Unitarity Triangle angle {alpha} (or {phi}{sub 2}). The B-factories at SLAC and KEK have made significant progress toward the measurement of {alpha} in recent years. This paper summarizes the results of the B-factories' constraints on {alpha}.
Date: December 21, 2005
Creator: Bevan, Adrian
System: The UNT Digital Library