Resource Type

Inertial fusion results from Nova and implication for the future of ICF (open access)

Inertial fusion results from Nova and implication for the future of ICF

A key objective of the US Inertial Confinement Fusion Program is to obtain high yield (100-1000 MJ) implosions in a laboratory environment. This requires high grain from an inertial fusion target from a driver capable of delivering about 10 MJ. Recent results have been sufficiently encouraging that the US Department of Energy is planning for such a capability called the Laboratory Microfusion Facility (LMF). In the past two years, we have conducted implosion-related experiments with approximately 20 kJ of 0.35-{mu}m laser light in 1-ns temporally flat-topped pulses. These experiments were done with the Nova laser, the primary US facility devoted to radiatively driven inertial confinement fusion. Our results show that we can accurately model a significant fraction of the phenomena required to obtain the fuel conditions needed for high gain. Both the x-ray conversion efficiency and the growth of Rayleigh-Taylor hydrodynamic instabilities are shown to be at acceptable levels. Targets designed so that the shape of the stagnated fuel can be imaged show that the x-ray drive in our hohlraums can be made isotropic to better than 3%. With this optimized drive and temporally unshaped laser pulses many critical implosion parameters are measured on targets designed for higher density. Good …
Date: October 1, 1988
Creator: Kilkenny, J. D.; Cable, M. D.; Campbell, E. M.; Coleman, L. W.; Correll, D. L.; Drake, R. P. et al.
System: The UNT Digital Library
Mass-transport limitation to in-cloud reaction rates: Implications of new accommodation coefficient measurements (open access)

Mass-transport limitation to in-cloud reaction rates: Implications of new accommodation coefficient measurements

Although it has been recognized for some time that the rate of reactive uptake of gases in cloudwater can depend on the value of the mass-accommodation coefficient (..cap alpha..) describing interfacial mass transport (MT), definitive evaluation of such rates is only now becoming possible with the availability of measurements of ..cap alpha.. for gases of atmospheric interest at air-water interfaces. Examination of MT limitation to the rate of in-cloud aqueous-phase oxidation of SO/sub 2/ by O/sub 3/ and H/sub 2/O/sub 2/ shows that despite the low value of ..cap alpha../sub O3/ (5 /times/ 10/sup /minus/4/), interfacial MT of this species is not limiting under essentially all conditions of interest; the high values of ..cap alpha.. for SO/sub 2/ (greater than or equal to 0.2) and H/sub 2/O/sub 2/ (greater than or equal to 0.08) indicate no interfacial MT limitation for these species also. Although gas- and aqueous-phase MT can be limiting under certain extremes of conditions, treating the system as under chemical kinetic control is generally an excellent approximation. Interfacial MT limitation also is found not to hinder the rate of H/sub 2/O/sub 2/ formation by aqueous-phase disproportionation of HO/sub 2/. Finally, the rapid uptake of N/sub 2/O/sub 5/ by …
Date: October 1, 1988
Creator: Schwartz, S. E.
System: The UNT Digital Library