Integrating Records Management (RM) and Information Technology (IT) (open access)

Integrating Records Management (RM) and Information Technology (IT)

Records Managers are continually exploring ways to integrate their services with those offered by Information Technology-related professions to capitalize on the advantages of providing customers a total solution to managing their records and information. In this day and age, where technology abounds, there often exists a fear on the part of records management that this integration will result in a loss of identity and the focus of one's own mission - a fear that records management may become subordinated to the fast-paced technology fields. They need to remember there is strength in numbers and it benefits RM, IT, and the customer when they can bring together the unique offerings each possess to reach synergy for the benefit of all the corporations. Records Managers, need to continually strive to move ''outside the records management box'', network, expand their knowledge, and influence the IT disciplines to incorporate the concept of ''management'' into their customer solutions.
Date: March 2, 2000
Creator: NUSBAUM,ANNA W. & CUSIMANO,LINDA J.
System: The UNT Digital Library
Development and testing of an air quality model for Mexico City (open access)

Development and testing of an air quality model for Mexico City

Los Alamos National Laboratory and Instituto Mexicano del Petroleo have embarked on a joint study of options for improving air quality in Mexico City. The intent is to develop a modeling system which can address the behavior of pollutants in the region so that option for improving Mexico City air quality can be properly evaluated. In February of 1991, the project conducted a field program which yielded a variety of data which is being used to evaluate and improve the models. Normally the worst air quality for both primary and photochemical pollutants occurs in the winter Mexico City. During the field program, measurements included: (1) lidar measurements of aerosol transport and dispersion, (2) aircraft measurements of winds, turbulence, and chemical species aloft, (3) aircraft measurements of earth surface skin temperatures, and (4) tethersonde measurements of wind, temperature and ozone vertical profiles. A three-dimensional, prognostic, higher order turbulence meteorological model (HOTMAC) was modified to include an urban canopy and urban heat sources. HOTMAC is used to drive an Monte-Carlo kernel dispersion code (RAPTAD). HOTMAC also provides winds and mixing heights for the CIT photochemical model which was developed by investigators at the California Institute of Technology and Carnegie Mellon University.
Date: March 2, 1992
Creator: Williams, M. D.; Streit, G. (Los Alamos National Lab., NM (United States)); Cruz, X.; Ruiz, M.; Sosa, G. (Instituto Mexicano de Petroleo, Mexico City (Mexico)); Russell, A. G. et al.
System: The UNT Digital Library
Development and Testing of an Air Quality Model for Mexico City (open access)

Development and Testing of an Air Quality Model for Mexico City

Los Alamos National Laboratory and Instituto Mexicano del Petroleo have embarked on a joint study of options for improving air quality in Mexico City. The intent is to develop a modeling system which can address the behavior of pollutants in the region so that option for improving Mexico City air quality can be properly evaluated. In February of 1991, the project conducted a field program which yielded a variety of data which is being used to evaluate and improve the models. Normally the worst air quality for both primary and photochemical pollutants occurs in the winter Mexico City. During the field program, measurements included: (1) lidar measurements of aerosol transport and dispersion, (2) aircraft measurements of winds, turbulence, and chemical species aloft, (3) aircraft measurements of earth surface skin temperatures, and (4) tethersonde measurements of wind, temperature and ozone vertical profiles. A three-dimensional, prognostic, higher order turbulence meteorological model (HOTMAC) was modified to include an urban canopy and urban heat sources. HOTMAC is used to drive an Monte-Carlo kernel dispersion code (RAPTAD). HOTMAC also provides winds and mixing heights for the CIT photochemical model which was developed by investigators at the California Institute of Technology and Carnegie Mellon University.
Date: March 2, 1992
Creator: Williams, M. D.; Streit, G.; Cruz, X.; Ruiz, M.; Sosa, G.; Russell, A. G. et al.
System: The UNT Digital Library
Cross-language search: The case of Google Language Tools (open access)

Cross-language search: The case of Google Language Tools

Article on cross-language searching and a case study of Google Language Tools, especially its cross-language search service.
Date: March 2, 2009
Creator: Chen, Jiangping & Bao, Yu
System: The UNT Digital Library
Massive Star Formation in a Gravitationally-Lensed H II Galaxy at z = 3.357 (open access)

Massive Star Formation in a Gravitationally-Lensed H II Galaxy at z = 3.357

The Lynx arc, with a redshift of 3.357, was discovered during spectroscopic follow-up of the z = 0.570 cluster RX J0848+4456 from the ROSAT Deep Cluster Survey. The arc is characterized by a very red R - K color and strong, narrow emission lines. Analysis of HST WFPC 2 imaging and Keck optical and infrared spectroscopy shows that the arc is an H II galaxy magnified by a factor of {approx} 10 by a complex cluster environment. The high intrinsic luminosity, the emission line spectrum, the absorption components seen in Ly{alpha} and C IV, and the restframe ultraviolet continuum are all consistent with a simple H II region model containing {approx} 10{sup 6} hot O stars. The best fit parameters for this model imply a very hot ionizing continuum (T{sub BB} {approx} 80, 000 K), high ionization parameter (log U {approx} -1), and low nebular metallicity (Z/Z{sub {circle_dot}} {approx} 0.05). The narrowness of the emission lines requires a low mass-to-light ratio for the ionizing stars, suggestive of an extremely low metallicity stellar cluster. The apparent overabundance of silicon in the nebula could indicate enrichment by past pair instability supernovae, requiring stars more massive than {approx}140M{sub {circle_dot}}.
Date: March 2, 2004
Creator: Villar-Martin, M.; Stern, D.; Hook, R. N.; Rosati, P.; Lombardi, M.; Humphrey, A. et al.
System: The UNT Digital Library