Determination of Dissociation Constants for GABAA Receptor Antagonists using Spontaneously Active Neuronal Networks in vitro

Access: Use of this item is restricted to the UNT Community
Changes in spontaneous spike activities recorded from murine frontal cortex networks grown on substrate-integrated microelectrodes were used to determine the dissociation constant (KB) of three GABAA antagonists. Neuronal networks were treated with fixed concentrations of GABAA antagonists and titrated with muscimol, a GABAA receptor agonist. Muscimol decreased spike activity in a concentration dependent manner with full efficacy (100% spike inhibition) and a 50% inhibitory concentration (IC50) of 0.14 ± 0.05 µM (mean ± SD, n=6). At 10, 20, 40 and 80 µM bicuculline, the muscimol IC50 values were shifted to 4.3 ± 1.8 µM (n=6), 6.8 ± 1.7 µM (n=6), 19.3 ± 3.54 µM (n=10) and 43.5 µM (n=2), respectively (mean ± SD). Muscimol titration in the presence of 10, 20, 40 µM of gabazine resulted in IC50s values of 20.1 (n=2), 37.17 (n=4), and 120.45 (n=2), respectively. In the presence of 20, 80, and 160 µM of TMPP (trimethylolpropane phosphate) the IC50s were 0.86 (n=2), 3.07 (n=3), 6.67 (n=2) µM, respectively. Increasing concentrations of GABAA antagonists shifted agonist log concentration-response curves to the right with identical efficacies, indicating direct competition for the GABAA receptor. A Schild plot analysis with linear regression resulted in slopes of 1.18 ± 0.18, 1.29 …
Date: December 2005
Creator: Oli-Rijal, Sabnam
System: The UNT Digital Library

Removal of selected water disinfection byproducts, and MTBE in batch and continuous flow systems using alternative sorbents.

Access: Use of this item is restricted to the UNT Community
A study was conducted to evaluate the sorption characteristics of six disinfection byproducts (DBPs) on four sorbents. To investigate sorption of volatile organic compounds (VOCs), specially designed experimental batch and continuous flow modules were developed. The investigated compounds included: chloroform, 1,2-dichloroethane (DCE), trichloroethylene (TCE), bromodichloromethane (BDCM), methyl tertiary butyl ether (MTBE), bromate and bromide ions. Sorbents used included light weight aggregate (LWA), an inorganic porous material with unique surface characteristics, Amberlite® XAD-16, a weakly basic anion exchange resin, Amberjet®, a strongly basic anion exchange resin, and granular activated carbon (GAC). Batch experiments were conducted on spiked Milli-Q® and lake water matrices. Results indicate considerable sorption of TCE (68.9%), slight sorption of bromate ions (19%) and no appreciable sorption for the other test compounds on LWA. The sorption of TCE increased to 75.3% in experiments utilizing smaller LWA particle size. LWA could be a viable medium for removal of TCE from contaminated surface or groundwater sites. Amberlite® was found unsuitable for use due to its physical characteristics, and its inability to efficiently remove any of the test compounds. Amberjet® showed an excellent ability to remove the inorganic anions (>99%), and BDCM (96.9%) from aqueous solutions but with considerable elevation of pH. …
Date: December 2002
Creator: Kadry, Ahmed Y.
System: The UNT Digital Library