Degree Discipline

Characterization of cDNA and Genomic Clones for a Palmitoyl-acyl Carrier Protein Thioesterase and an Osmotin-Like PR5 Protein in Gossypium Hirsutum.

Access: Use of this item is restricted to the UNT Community
Putative cotton cDNA clones and cognate genomic clones for a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE) and an osmotin-like pathogenesis-related 5 (PR5) protein have been isolated and characterized. PATE is a class B fatty acid thioesterase with specificity for saturated long-chain fatty acids such as palmitate, and is implicated as a key enzyme to be targeted for regulation of fatty acid synthesis in order to alter cotton seed oil profiles. A nearly full-length 1.7-kb cDNA clone was isolated using a hybridization probe derived from an Arabidopsis PATE cDNA clone designated TE 3-2. A 17-kb genomic segment encompassing the PATE gene was also isolated, which has six exons and five introns with high sequence identity with other FatB cDNA/gene sequences. The deduced PATE preprotein amino acid sequence of 413 residues has putative signal sequences for targeting to the chloroplast stroma. PR5 proteins called osmotins are made in response to fungal pathogen stress or osmotic stress (water deprivation or salt exposure). Osmotins may actually form pores in fungal membranes, leading to osmotic rupture and destruction of the fungal cells. A cotton osmotin-like PR5 cDNA insert of 1,052 base-pairs was isolated and shown to encode a preprotein of 242 amino acids and is …
Date: May 2002
Creator: Yoder, David W.
System: The UNT Digital Library

Callus Development and Organogenesis in Cultured Explants of Cowpea (Vigna unguiculata (L.) Walp

Access: Use of this item is restricted to the UNT Community
Cowpea, Vigna unguiculata (L.) Walp is an excellent source of protein, vitamins and minerals and a major food crop many parts of Africa. Optimal production levels are hampered by insect pests and diseases. Biotechnological techniques such as tissue culture and genetic engineering can aid in the development of varieties with resistance to insect pests and diseases. The objective of this study was to investigate conditions necessary for the development of a reproducible tissue culture system that can be applied to regenerate transformed cells from culture. The in vitro manipulation of cowpea using Murashige and Skoog (MS) medium, auxins and cytokinins resulted in the formation of callus and rhizogenesis. Calli that were formed were separated into six classes based on color and texture. Yellowish friable callus, yellowish compact, soft yellowish callus and green and white were composed of largely vacuolated cells and were non-regenerative. Friable green callus was the most prevalent callus type and could form of roots in some hormone combinations. Green spots were formed on hard compact green callus. The green spots became nodular, forming root primordia and ultimately giving rise to roots. None of the six calli types gave rise to the formation of shoots. Embryogenic callus was …
Date: December 2004
Creator: Omwenga, George Isanda
System: The UNT Digital Library